Datastore reproduce (#3)
* fix: diskann zmq port and passages * feat: auto discovery of packages and fix passage gen for diskann * docs: embedding pruning * refactor: passage structure * feat: reproducible research datas, rpj_wiki & dpr * refactor: chat and base searcher * feat: chat on mps
This commit is contained in:
@@ -1,24 +0,0 @@
|
||||
from llama_index.core import VectorStoreIndex, Document
|
||||
from llama_index.core.embeddings import resolve_embed_model
|
||||
|
||||
# Check the default embedding model
|
||||
embed_model = resolve_embed_model("default")
|
||||
print(f"Default embedding model: {embed_model}")
|
||||
|
||||
# Create a simple test document
|
||||
doc = Document(text="This is a test document")
|
||||
|
||||
# Get embedding dimension
|
||||
try:
|
||||
# Test embedding
|
||||
test_embedding = embed_model.get_text_embedding("test")
|
||||
print(f"Embedding dimension: {len(test_embedding)}")
|
||||
print(f"Embedding type: {type(test_embedding)}")
|
||||
except Exception as e:
|
||||
print(f"Error getting embedding: {e}")
|
||||
|
||||
# Alternative way to check dimension
|
||||
if hasattr(embed_model, 'embed_dim'):
|
||||
print(f"Model embed_dim attribute: {embed_model.embed_dim}")
|
||||
elif hasattr(embed_model, 'dimension'):
|
||||
print(f"Model dimension attribute: {embed_model.dimension}")
|
||||
@@ -1,20 +0,0 @@
|
||||
from llama_index.core import VectorStoreIndex, Document
|
||||
from llama_index.core.embeddings import resolve_embed_model
|
||||
|
||||
# Check the default embedding model
|
||||
embed_model = resolve_embed_model("default")
|
||||
print(f"Default embedding model: {embed_model}")
|
||||
|
||||
# Create a simple test
|
||||
doc = Document(text="This is a test document")
|
||||
index = VectorStoreIndex.from_documents([doc])
|
||||
|
||||
# Get the embedding model from the index
|
||||
index_embed_model = index.embed_model
|
||||
print(f"Index embedding model: {index_embed_model}")
|
||||
|
||||
# Check if it's OpenAI or local
|
||||
if hasattr(index_embed_model, 'model_name'):
|
||||
print(f"Model name: {index_embed_model.model_name}")
|
||||
else:
|
||||
print(f"Embedding model type: {type(index_embed_model)}")
|
||||
Reference in New Issue
Block a user