feat: chat on mps

This commit is contained in:
Andy Lee
2025-07-12 06:07:43 +00:00
parent d288946173
commit ec5e9ac33b
5 changed files with 54 additions and 238 deletions

View File

@@ -86,7 +86,7 @@ async def main(args):
query = "什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发" query = "什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发"
print(f"You: {query}") print(f"You: {query}")
chat_response = chat.ask(query, top_k=20, recompute_beighbor_embeddings=True, complexity=32, beam_width=1) chat_response = chat.ask(query, top_k=20, recompute_beighbor_embeddings=True, complexity=32)
print(f"Leann: {chat_response}") print(f"Leann: {chat_response}")
if __name__ == "__main__": if __name__ == "__main__":

View File

@@ -147,8 +147,8 @@ class HNSWSearcher(BaseSearcher):
params = faiss.SearchParametersHNSW() params = faiss.SearchParametersHNSW()
params.zmq_port = kwargs.get("zmq_port", 5557) params.zmq_port = kwargs.get("zmq_port", 5557)
params.efSearch = kwargs.get("ef", 128) params.efSearch = kwargs.get("complexity", 32)
params.beam_size = 2 params.beam_size = kwargs.get("beam_width", 1)
batch_size = query.shape[0] batch_size = query.shape[0]
distances = np.empty((batch_size, top_k), dtype=np.float32) distances = np.empty((batch_size, top_k), dtype=np.float32)

View File

@@ -18,15 +18,43 @@ class LLMInterface(ABC):
@abstractmethod @abstractmethod
def ask(self, prompt: str, **kwargs) -> str: def ask(self, prompt: str, **kwargs) -> str:
""" """
Sends a prompt to the LLM and returns the generated text. Additional keyword arguments (kwargs) for advanced search customization. Example usage:
chat.ask(
"What is ANN?",
top_k=10,
complexity=64,
beam_width=8,
USE_DEFERRED_FETCH=True,
skip_search_reorder=True,
recompute_beighbor_embeddings=True,
dedup_node_dis=True,
prune_ratio=0.1,
batch_recompute=True,
global_pruning=True
)
Args: Supported kwargs:
prompt: The input prompt for the LLM. - complexity (int): Search complexity parameter (default: 32)
**kwargs: Additional keyword arguments for the LLM backend. - beam_width (int): Beam width for search (default: 4)
- USE_DEFERRED_FETCH (bool): Enable deferred fetch mode (default: False)
Returns: - skip_search_reorder (bool): Skip search reorder step (default: False)
The response string from the LLM. - recompute_beighbor_embeddings (bool): Enable ZMQ embedding server for neighbor recomputation (default: False)
- dedup_node_dis (bool): Deduplicate nodes by distance (default: False)
- prune_ratio (float): Pruning ratio for search (default: 0.0)
- batch_recompute (bool): Enable batch recomputation (default: False)
- global_pruning (bool): Enable global pruning (default: False)
""" """
# """
# Sends a prompt to the LLM and returns the generated text.
# Args:
# prompt: The input prompt for the LLM.
# **kwargs: Additional keyword arguments for the LLM backend.
# Returns:
# The response string from the LLM.
# """
pass pass
class OllamaChat(LLMInterface): class OllamaChat(LLMInterface):
@@ -82,10 +110,22 @@ class HFChat(LLMInterface):
logger.info(f"Initializing HFChat with model='{model_name}'") logger.info(f"Initializing HFChat with model='{model_name}'")
try: try:
from transformers import pipeline from transformers import pipeline
import torch
except ImportError: except ImportError:
raise ImportError("The 'transformers' library is required for Hugging Face models. Please install it with 'pip install transformers'.") raise ImportError("The 'transformers' and 'torch' libraries are required for Hugging Face models. Please install them with 'pip install transformers torch'.")
self.pipeline = pipeline("text-generation", model=model_name) # Auto-detect device
if torch.cuda.is_available():
device = "cuda"
logger.info("CUDA is available. Using GPU.")
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
device = "mps"
logger.info("MPS is available. Using Apple Silicon GPU.")
else:
device = "cpu"
logger.info("No GPU detected. Using CPU.")
self.pipeline = pipeline("text-generation", model=model_name, device=device)
def ask(self, prompt: str, **kwargs) -> str: def ask(self, prompt: str, **kwargs) -> str:
# Sensible defaults for text generation # Sensible defaults for text generation

View File

@@ -1,68 +0,0 @@
# HNSW Index Storage Optimization
This document explains the storage optimization features available in the HNSW backend.
## Storage Modes
The HNSW backend supports two orthogonal optimization techniques:
### 1. CSR Compression (`is_compact=True`)
- Converts the graph structure from standard format to Compressed Sparse Row (CSR) format
- Reduces memory overhead from graph adjacency storage
- Maintains all embedding data for direct access
### 2. Embedding Pruning (`is_recompute=True`)
- Removes embedding vectors from the index file
- Replaces them with a NULL storage marker
- Requires recomputation via embedding server during search
- Must be used with `is_compact=True` for efficiency
## Performance Impact
**Storage Reduction (100 vectors, 384 dimensions):**
```
Standard format: 168 KB (embeddings + graph)
CSR only: 160 KB (embeddings + compressed graph)
CSR + Pruned: 6 KB (compressed graph only)
```
**Key Benefits:**
- **CSR compression**: ~5% size reduction from graph optimization
- **Embedding pruning**: ~95% size reduction by removing embeddings
- **Combined**: Up to 96% total storage reduction
## Usage
```python
# Standard format (largest)
builder = LeannBuilder(
backend_name="hnsw",
is_compact=False,
is_recompute=False
)
# CSR compressed (medium)
builder = LeannBuilder(
backend_name="hnsw",
is_compact=True,
is_recompute=False
)
# CSR + Pruned (smallest, requires embedding server)
builder = LeannBuilder(
backend_name="hnsw",
is_compact=True, # Required for pruning
is_recompute=True # Default: enabled
)
```
## Trade-offs
| Mode | Storage | Search Speed | Memory Usage | Setup Complexity |
|------|---------|--------------|--------------|------------------|
| Standard | Largest | Fastest | Highest | Simple |
| CSR | Medium | Fast | Medium | Simple |
| CSR + Pruned | Smallest | Slower* | Lowest | Complex** |
*Requires network round-trip to embedding server for recomputation
**Needs embedding server and passages file for search

View File

@@ -1,156 +0,0 @@
#!/usr/bin/env python3
"""
Sanity check script to verify HNSW index pruning effectiveness.
Tests the difference in file sizes between pruned and non-pruned indices.
"""
import os
import sys
import tempfile
from pathlib import Path
import numpy as np
import json
# Add the project root to the Python path
project_root = Path(__file__).parent.parent.parent
sys.path.insert(0, str(project_root))
# Import backend packages to trigger plugin registration
import leann_backend_hnsw
from leann.api import LeannBuilder
def create_sample_documents(num_docs=1000):
"""Create sample documents for testing"""
documents = []
for i in range(num_docs):
documents.append(f"Sample document {i} with some random text content for testing purposes.")
return documents
def build_index(documents, output_dir, is_recompute=True):
"""Build HNSW index with specified recompute setting"""
index_path = os.path.join(output_dir, "test_index.hnsw")
builder = LeannBuilder(
backend_name="hnsw",
embedding_model="sentence-transformers/all-MiniLM-L6-v2",
M=16,
efConstruction=100,
distance_metric="mips",
is_compact=True,
is_recompute=is_recompute
)
for doc in documents:
builder.add_text(doc)
builder.build_index(index_path)
return index_path
def get_file_size(filepath):
"""Get file size in bytes"""
return os.path.getsize(filepath)
def main():
print("🔍 HNSW Pruning Sanity Check")
print("=" * 50)
# Create sample data
print("📊 Creating sample documents...")
documents = create_sample_documents(num_docs=1000)
print(f" Number of documents: {len(documents)}")
with tempfile.TemporaryDirectory() as temp_dir:
print(f"📁 Working in temporary directory: {temp_dir}")
# Build index with pruning (is_recompute=True)
print("\n🔨 Building index with pruning enabled (is_recompute=True)...")
pruned_dir = os.path.join(temp_dir, "pruned")
os.makedirs(pruned_dir, exist_ok=True)
pruned_index_path = build_index(documents, pruned_dir, is_recompute=True)
# Check what files were actually created
print(f" Looking for index files at: {pruned_index_path}")
import glob
files = glob.glob(f"{pruned_index_path}*")
print(f" Found files: {files}")
# Try to find the actual index file
if os.path.exists(f"{pruned_index_path}.index"):
pruned_index_file = f"{pruned_index_path}.index"
else:
# Look for any .index file in the directory
index_files = glob.glob(f"{pruned_dir}/*.index")
if index_files:
pruned_index_file = index_files[0]
else:
raise FileNotFoundError(f"No .index file found in {pruned_dir}")
pruned_size = get_file_size(pruned_index_file)
print(f" ✅ Pruned index built successfully")
print(f" 📏 Pruned index size: {pruned_size:,} bytes ({pruned_size/1024:.1f} KB)")
# Build index without pruning (is_recompute=False)
print("\n🔨 Building index without pruning (is_recompute=False)...")
non_pruned_dir = os.path.join(temp_dir, "non_pruned")
os.makedirs(non_pruned_dir, exist_ok=True)
non_pruned_index_path = build_index(documents, non_pruned_dir, is_recompute=False)
# Check what files were actually created
print(f" Looking for index files at: {non_pruned_index_path}")
files = glob.glob(f"{non_pruned_index_path}*")
print(f" Found files: {files}")
# Try to find the actual index file
if os.path.exists(f"{non_pruned_index_path}.index"):
non_pruned_index_file = f"{non_pruned_index_path}.index"
else:
# Look for any .index file in the directory
index_files = glob.glob(f"{non_pruned_dir}/*.index")
if index_files:
non_pruned_index_file = index_files[0]
else:
raise FileNotFoundError(f"No .index file found in {non_pruned_dir}")
non_pruned_size = get_file_size(non_pruned_index_file)
print(f" ✅ Non-pruned index built successfully")
print(f" 📏 Non-pruned index size: {non_pruned_size:,} bytes ({non_pruned_size/1024:.1f} KB)")
# Compare sizes
print("\n📊 Comparison Results:")
print("=" * 30)
size_diff = non_pruned_size - pruned_size
size_ratio = pruned_size / non_pruned_size if non_pruned_size > 0 else 0
reduction_percent = (1 - size_ratio) * 100
print(f"Non-pruned index: {non_pruned_size:,} bytes ({non_pruned_size/1024:.1f} KB)")
print(f"Pruned index: {pruned_size:,} bytes ({pruned_size/1024:.1f} KB)")
print(f"Size difference: {size_diff:,} bytes ({size_diff/1024:.1f} KB)")
print(f"Size ratio: {size_ratio:.3f}")
print(f"Size reduction: {reduction_percent:.1f}%")
# Verify pruning effectiveness
print("\n🔍 Verification:")
if size_diff > 0:
print(" ✅ Pruning is effective - pruned index is smaller")
if reduction_percent > 10:
print(f" ✅ Significant size reduction: {reduction_percent:.1f}%")
else:
print(f" ⚠️ Small size reduction: {reduction_percent:.1f}%")
else:
print(" ❌ Pruning appears ineffective - no size reduction")
# Check if passages files were created
pruned_passages = f"{pruned_index_path}.passages.json"
non_pruned_passages = f"{non_pruned_index_path}.passages.json"
print(f"\n📄 Passages files:")
print(f" Pruned passages file exists: {os.path.exists(pruned_passages)}")
print(f" Non-pruned passages file exists: {os.path.exists(non_pruned_passages)}")
return True
if __name__ == "__main__":
success = main()
sys.exit(0 if success else 1)