Compare commits
3 Commits
colqwen
...
fix/ask-cl
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
47aeb85f82 | ||
|
|
db7ba27ff6 | ||
|
|
5f7806e16f |
@@ -546,6 +546,9 @@ leann search my-docs "machine learning concepts"
|
|||||||
# Interactive chat with your documents
|
# Interactive chat with your documents
|
||||||
leann ask my-docs --interactive
|
leann ask my-docs --interactive
|
||||||
|
|
||||||
|
# Ask a single question (non-interactive)
|
||||||
|
leann ask my-docs "Where are prompts configured?"
|
||||||
|
|
||||||
# List all your indexes
|
# List all your indexes
|
||||||
leann list
|
leann list
|
||||||
|
|
||||||
|
|||||||
@@ -11,6 +11,7 @@ from typing import Any
|
|||||||
import dotenv
|
import dotenv
|
||||||
from leann.api import LeannBuilder, LeannChat
|
from leann.api import LeannBuilder, LeannChat
|
||||||
from leann.registry import register_project_directory
|
from leann.registry import register_project_directory
|
||||||
|
from leann.settings import resolve_ollama_host, resolve_openai_api_key, resolve_openai_base_url
|
||||||
|
|
||||||
dotenv.load_dotenv()
|
dotenv.load_dotenv()
|
||||||
|
|
||||||
@@ -78,6 +79,24 @@ class BaseRAGExample(ABC):
|
|||||||
choices=["sentence-transformers", "openai", "mlx", "ollama"],
|
choices=["sentence-transformers", "openai", "mlx", "ollama"],
|
||||||
help="Embedding backend mode (default: sentence-transformers), we provide sentence-transformers, openai, mlx, or ollama",
|
help="Embedding backend mode (default: sentence-transformers), we provide sentence-transformers, openai, mlx, or ollama",
|
||||||
)
|
)
|
||||||
|
embedding_group.add_argument(
|
||||||
|
"--embedding-host",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="Override Ollama-compatible embedding host",
|
||||||
|
)
|
||||||
|
embedding_group.add_argument(
|
||||||
|
"--embedding-api-base",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="Base URL for OpenAI-compatible embedding services",
|
||||||
|
)
|
||||||
|
embedding_group.add_argument(
|
||||||
|
"--embedding-api-key",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="API key for embedding service (defaults to OPENAI_API_KEY)",
|
||||||
|
)
|
||||||
|
|
||||||
# LLM parameters
|
# LLM parameters
|
||||||
llm_group = parser.add_argument_group("LLM Parameters")
|
llm_group = parser.add_argument_group("LLM Parameters")
|
||||||
@@ -97,8 +116,8 @@ class BaseRAGExample(ABC):
|
|||||||
llm_group.add_argument(
|
llm_group.add_argument(
|
||||||
"--llm-host",
|
"--llm-host",
|
||||||
type=str,
|
type=str,
|
||||||
default="http://localhost:11434",
|
default=None,
|
||||||
help="Host for Ollama API (default: http://localhost:11434)",
|
help="Host for Ollama-compatible APIs (defaults to LEANN_OLLAMA_HOST/OLLAMA_HOST)",
|
||||||
)
|
)
|
||||||
llm_group.add_argument(
|
llm_group.add_argument(
|
||||||
"--thinking-budget",
|
"--thinking-budget",
|
||||||
@@ -107,6 +126,18 @@ class BaseRAGExample(ABC):
|
|||||||
default=None,
|
default=None,
|
||||||
help="Thinking budget for reasoning models (low/medium/high). Supported by GPT-Oss:20b and other reasoning models.",
|
help="Thinking budget for reasoning models (low/medium/high). Supported by GPT-Oss:20b and other reasoning models.",
|
||||||
)
|
)
|
||||||
|
llm_group.add_argument(
|
||||||
|
"--llm-api-base",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="Base URL for OpenAI-compatible APIs",
|
||||||
|
)
|
||||||
|
llm_group.add_argument(
|
||||||
|
"--llm-api-key",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="API key for OpenAI-compatible APIs (defaults to OPENAI_API_KEY)",
|
||||||
|
)
|
||||||
|
|
||||||
# AST Chunking parameters
|
# AST Chunking parameters
|
||||||
ast_group = parser.add_argument_group("AST Chunking Parameters")
|
ast_group = parser.add_argument_group("AST Chunking Parameters")
|
||||||
@@ -205,9 +236,13 @@ class BaseRAGExample(ABC):
|
|||||||
|
|
||||||
if args.llm == "openai":
|
if args.llm == "openai":
|
||||||
config["model"] = args.llm_model or "gpt-4o"
|
config["model"] = args.llm_model or "gpt-4o"
|
||||||
|
config["base_url"] = resolve_openai_base_url(args.llm_api_base)
|
||||||
|
resolved_key = resolve_openai_api_key(args.llm_api_key)
|
||||||
|
if resolved_key:
|
||||||
|
config["api_key"] = resolved_key
|
||||||
elif args.llm == "ollama":
|
elif args.llm == "ollama":
|
||||||
config["model"] = args.llm_model or "llama3.2:1b"
|
config["model"] = args.llm_model or "llama3.2:1b"
|
||||||
config["host"] = args.llm_host
|
config["host"] = resolve_ollama_host(args.llm_host)
|
||||||
elif args.llm == "hf":
|
elif args.llm == "hf":
|
||||||
config["model"] = args.llm_model or "Qwen/Qwen2.5-1.5B-Instruct"
|
config["model"] = args.llm_model or "Qwen/Qwen2.5-1.5B-Instruct"
|
||||||
elif args.llm == "simulated":
|
elif args.llm == "simulated":
|
||||||
@@ -223,10 +258,20 @@ class BaseRAGExample(ABC):
|
|||||||
print(f"\n[Building Index] Creating {self.name} index...")
|
print(f"\n[Building Index] Creating {self.name} index...")
|
||||||
print(f"Total text chunks: {len(texts)}")
|
print(f"Total text chunks: {len(texts)}")
|
||||||
|
|
||||||
|
embedding_options: dict[str, Any] = {}
|
||||||
|
if args.embedding_mode == "ollama":
|
||||||
|
embedding_options["host"] = resolve_ollama_host(args.embedding_host)
|
||||||
|
elif args.embedding_mode == "openai":
|
||||||
|
embedding_options["base_url"] = resolve_openai_base_url(args.embedding_api_base)
|
||||||
|
resolved_embedding_key = resolve_openai_api_key(args.embedding_api_key)
|
||||||
|
if resolved_embedding_key:
|
||||||
|
embedding_options["api_key"] = resolved_embedding_key
|
||||||
|
|
||||||
builder = LeannBuilder(
|
builder = LeannBuilder(
|
||||||
backend_name=args.backend_name,
|
backend_name=args.backend_name,
|
||||||
embedding_model=args.embedding_model,
|
embedding_model=args.embedding_model,
|
||||||
embedding_mode=args.embedding_mode,
|
embedding_mode=args.embedding_mode,
|
||||||
|
embedding_options=embedding_options or None,
|
||||||
graph_degree=args.graph_degree,
|
graph_degree=args.graph_degree,
|
||||||
complexity=args.build_complexity,
|
complexity=args.build_complexity,
|
||||||
is_compact=not args.no_compact,
|
is_compact=not args.no_compact,
|
||||||
|
|||||||
@@ -83,6 +83,81 @@ ollama pull nomic-embed-text
|
|||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
|
## Local & Remote Inference Endpoints
|
||||||
|
|
||||||
|
> Applies to both LLMs (`leann ask`) and embeddings (`leann build`).
|
||||||
|
|
||||||
|
LEANN now treats Ollama, LM Studio, and other OpenAI-compatible runtimes as first-class providers. You can point LEANN at any compatible endpoint – either on the same machine or across the network – with a couple of flags or environment variables.
|
||||||
|
|
||||||
|
### One-Time Environment Setup
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Works for OpenAI-compatible runtimes such as LM Studio, vLLM, SGLang, llamafile, etc.
|
||||||
|
export OPENAI_API_KEY="your-key" # or leave unset for local servers that do not check keys
|
||||||
|
export OPENAI_BASE_URL="http://localhost:1234/v1"
|
||||||
|
|
||||||
|
# Ollama-compatible runtimes (Ollama, Ollama on another host, llamacpp-server, etc.)
|
||||||
|
export LEANN_OLLAMA_HOST="http://localhost:11434" # falls back to OLLAMA_HOST or LOCAL_LLM_ENDPOINT
|
||||||
|
```
|
||||||
|
|
||||||
|
LEANN also recognises `LEANN_LOCAL_LLM_HOST` (highest priority), `LEANN_OPENAI_BASE_URL`, and `LOCAL_OPENAI_BASE_URL`, so existing scripts continue to work.
|
||||||
|
|
||||||
|
### Passing Hosts Per Command
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Build an index with a remote embedding server
|
||||||
|
leann build my-notes \
|
||||||
|
--docs ./notes \
|
||||||
|
--embedding-mode openai \
|
||||||
|
--embedding-model text-embedding-qwen3-embedding-0.6b \
|
||||||
|
--embedding-api-base http://192.168.1.50:1234/v1 \
|
||||||
|
--embedding-api-key local-dev-key
|
||||||
|
|
||||||
|
# Query using a local LM Studio instance via OpenAI-compatible API
|
||||||
|
leann ask my-notes \
|
||||||
|
--llm openai \
|
||||||
|
--llm-model qwen3-8b \
|
||||||
|
--api-base http://localhost:1234/v1 \
|
||||||
|
--api-key local-dev-key
|
||||||
|
|
||||||
|
# Query an Ollama instance running on another box
|
||||||
|
leann ask my-notes \
|
||||||
|
--llm ollama \
|
||||||
|
--llm-model qwen3:14b \
|
||||||
|
--host http://192.168.1.101:11434
|
||||||
|
```
|
||||||
|
|
||||||
|
⚠️ **Make sure the endpoint is reachable**: when your inference server runs on a home/workstation and the index/search job runs in the cloud, the server must be able to reach the host you configured. Typical options include:
|
||||||
|
|
||||||
|
- Expose a public IP (and open the relevant port) on the machine that hosts LM Studio/Ollama.
|
||||||
|
- Configure router or cloud provider port forwarding.
|
||||||
|
- Tunnel traffic through tools like `tailscale`, `cloudflared`, or `ssh -R`.
|
||||||
|
|
||||||
|
When you set these options while building an index, LEANN stores them in `meta.json`. Any subsequent `leann ask` or searcher process automatically reuses the same provider settings – even when we spawn background embedding servers. This makes the “server without GPU talking to my local workstation” workflow from [issue #80](https://github.com/yichuan-w/LEANN/issues/80#issuecomment-2287230548) work out-of-the-box.
|
||||||
|
|
||||||
|
**Tip:** If your runtime does not require an API key (many local stacks don’t), leave `--api-key` unset. LEANN will skip injecting credentials.
|
||||||
|
|
||||||
|
### Python API Usage
|
||||||
|
|
||||||
|
You can pass the same configuration from Python:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from leann.api import LeannBuilder
|
||||||
|
|
||||||
|
builder = LeannBuilder(
|
||||||
|
backend_name="hnsw",
|
||||||
|
embedding_mode="openai",
|
||||||
|
embedding_model="text-embedding-qwen3-embedding-0.6b",
|
||||||
|
embedding_options={
|
||||||
|
"base_url": "http://192.168.1.50:1234/v1",
|
||||||
|
"api_key": "local-dev-key",
|
||||||
|
},
|
||||||
|
)
|
||||||
|
builder.build_index("./indexes/my-notes", chunks)
|
||||||
|
```
|
||||||
|
|
||||||
|
`embedding_options` is persisted to the index `meta.json`, so subsequent `LeannSearcher` or `LeannChat` sessions automatically reuse the same provider settings (the embedding server manager forwards them to the provider for you).
|
||||||
|
|
||||||
## Index Selection: Matching Your Scale
|
## Index Selection: Matching Your Scale
|
||||||
|
|
||||||
### HNSW (Hierarchical Navigable Small World)
|
### HNSW (Hierarchical Navigable Small World)
|
||||||
|
|||||||
0
examples/__init__.py
Normal file
0
examples/__init__.py
Normal file
404
examples/dynamic_update_no_recompute.py
Normal file
404
examples/dynamic_update_no_recompute.py
Normal file
@@ -0,0 +1,404 @@
|
|||||||
|
"""Dynamic HNSW update demo without compact storage.
|
||||||
|
|
||||||
|
This script reproduces the minimal scenario we used while debugging on-the-fly
|
||||||
|
recompute:
|
||||||
|
|
||||||
|
1. Build a non-compact HNSW index from the first few paragraphs of a text file.
|
||||||
|
2. Print the top results with `recompute_embeddings=True`.
|
||||||
|
3. Append additional paragraphs with :meth:`LeannBuilder.update_index`.
|
||||||
|
4. Run the same query again to show the newly inserted passages.
|
||||||
|
|
||||||
|
Run it with ``uv`` (optionally pointing LEANN_HNSW_LOG_PATH at a file to inspect
|
||||||
|
ZMQ activity)::
|
||||||
|
|
||||||
|
LEANN_HNSW_LOG_PATH=embedding_fetch.log \
|
||||||
|
uv run -m examples.dynamic_update_no_recompute \
|
||||||
|
--index-path .leann/examples/leann-demo.leann
|
||||||
|
|
||||||
|
By default the script builds an index from ``data/2501.14312v1 (1).pdf`` and
|
||||||
|
then updates it with LEANN-related material from ``data/2506.08276v1.pdf``.
|
||||||
|
It issues the query "What's LEANN?" before and after the update to show how the
|
||||||
|
new passages become immediately searchable. The script uses the
|
||||||
|
``sentence-transformers/all-MiniLM-L6-v2`` model with ``is_recompute=True`` so
|
||||||
|
Faiss pulls existing vectors on demand via the ZMQ embedding server, while
|
||||||
|
freshly added passages are embedded locally just like the initial build.
|
||||||
|
|
||||||
|
To make storage comparisons easy, the script can also build a matching
|
||||||
|
``is_recompute=False`` baseline (enabled by default) and report the index size
|
||||||
|
delta after the update. Disable the baseline run with
|
||||||
|
``--skip-compare-no-recompute`` if you only need the recompute flow.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import json
|
||||||
|
from collections.abc import Iterable
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
|
from leann.api import LeannBuilder, LeannSearcher
|
||||||
|
from leann.registry import register_project_directory
|
||||||
|
|
||||||
|
from apps.chunking import create_text_chunks
|
||||||
|
|
||||||
|
REPO_ROOT = Path(__file__).resolve().parents[1]
|
||||||
|
|
||||||
|
DEFAULT_QUERY = "What's LEANN?"
|
||||||
|
DEFAULT_INITIAL_FILES = [REPO_ROOT / "data" / "2501.14312v1 (1).pdf"]
|
||||||
|
DEFAULT_UPDATE_FILES = [REPO_ROOT / "data" / "2506.08276v1.pdf"]
|
||||||
|
|
||||||
|
|
||||||
|
def load_chunks_from_files(paths: list[Path]) -> list[str]:
|
||||||
|
from llama_index.core import SimpleDirectoryReader
|
||||||
|
|
||||||
|
documents = []
|
||||||
|
for path in paths:
|
||||||
|
p = path.expanduser().resolve()
|
||||||
|
if not p.exists():
|
||||||
|
raise FileNotFoundError(f"Input path not found: {p}")
|
||||||
|
if p.is_dir():
|
||||||
|
reader = SimpleDirectoryReader(str(p), recursive=False)
|
||||||
|
documents.extend(reader.load_data(show_progress=True))
|
||||||
|
else:
|
||||||
|
reader = SimpleDirectoryReader(input_files=[str(p)])
|
||||||
|
documents.extend(reader.load_data(show_progress=True))
|
||||||
|
|
||||||
|
if not documents:
|
||||||
|
return []
|
||||||
|
|
||||||
|
chunks = create_text_chunks(
|
||||||
|
documents,
|
||||||
|
chunk_size=512,
|
||||||
|
chunk_overlap=128,
|
||||||
|
use_ast_chunking=False,
|
||||||
|
)
|
||||||
|
return [c for c in chunks if isinstance(c, str) and c.strip()]
|
||||||
|
|
||||||
|
|
||||||
|
def run_search(index_path: Path, query: str, top_k: int, *, recompute_embeddings: bool) -> list:
|
||||||
|
searcher = LeannSearcher(str(index_path))
|
||||||
|
try:
|
||||||
|
return searcher.search(
|
||||||
|
query=query,
|
||||||
|
top_k=top_k,
|
||||||
|
recompute_embeddings=recompute_embeddings,
|
||||||
|
batch_size=16,
|
||||||
|
)
|
||||||
|
finally:
|
||||||
|
searcher.cleanup()
|
||||||
|
|
||||||
|
|
||||||
|
def print_results(title: str, results: Iterable) -> None:
|
||||||
|
print(f"\n=== {title} ===")
|
||||||
|
res_list = list(results)
|
||||||
|
print(f"results count: {len(res_list)}")
|
||||||
|
print("passages:")
|
||||||
|
if not res_list:
|
||||||
|
print(" (no passages returned)")
|
||||||
|
for res in res_list:
|
||||||
|
snippet = res.text.replace("\n", " ")[:120]
|
||||||
|
print(f" - {res.id}: {snippet}... (score={res.score:.4f})")
|
||||||
|
|
||||||
|
|
||||||
|
def build_initial_index(
|
||||||
|
index_path: Path,
|
||||||
|
paragraphs: list[str],
|
||||||
|
model_name: str,
|
||||||
|
embedding_mode: str,
|
||||||
|
is_recompute: bool,
|
||||||
|
) -> None:
|
||||||
|
builder = LeannBuilder(
|
||||||
|
backend_name="hnsw",
|
||||||
|
embedding_model=model_name,
|
||||||
|
embedding_mode=embedding_mode,
|
||||||
|
is_compact=False,
|
||||||
|
is_recompute=is_recompute,
|
||||||
|
)
|
||||||
|
for idx, passage in enumerate(paragraphs):
|
||||||
|
builder.add_text(passage, metadata={"id": str(idx)})
|
||||||
|
builder.build_index(str(index_path))
|
||||||
|
|
||||||
|
|
||||||
|
def update_index(
|
||||||
|
index_path: Path,
|
||||||
|
start_id: int,
|
||||||
|
paragraphs: list[str],
|
||||||
|
model_name: str,
|
||||||
|
embedding_mode: str,
|
||||||
|
is_recompute: bool,
|
||||||
|
) -> None:
|
||||||
|
updater = LeannBuilder(
|
||||||
|
backend_name="hnsw",
|
||||||
|
embedding_model=model_name,
|
||||||
|
embedding_mode=embedding_mode,
|
||||||
|
is_compact=False,
|
||||||
|
is_recompute=is_recompute,
|
||||||
|
)
|
||||||
|
for offset, passage in enumerate(paragraphs, start=start_id):
|
||||||
|
updater.add_text(passage, metadata={"id": str(offset)})
|
||||||
|
updater.update_index(str(index_path))
|
||||||
|
|
||||||
|
|
||||||
|
def ensure_index_dir(index_path: Path) -> None:
|
||||||
|
index_path.parent.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
|
||||||
|
def cleanup_index_files(index_path: Path) -> None:
|
||||||
|
"""Remove leftover index artifacts for a clean rebuild."""
|
||||||
|
|
||||||
|
parent = index_path.parent
|
||||||
|
if not parent.exists():
|
||||||
|
return
|
||||||
|
stem = index_path.stem
|
||||||
|
for file in parent.glob(f"{stem}*"):
|
||||||
|
if file.is_file():
|
||||||
|
file.unlink()
|
||||||
|
|
||||||
|
|
||||||
|
def index_file_size(index_path: Path) -> int:
|
||||||
|
"""Return the size of the primary .index file for the given index path."""
|
||||||
|
|
||||||
|
index_file = index_path.parent / f"{index_path.stem}.index"
|
||||||
|
return index_file.stat().st_size if index_file.exists() else 0
|
||||||
|
|
||||||
|
|
||||||
|
def load_metadata_snapshot(index_path: Path) -> dict[str, Any] | None:
|
||||||
|
meta_path = index_path.parent / f"{index_path.name}.meta.json"
|
||||||
|
if not meta_path.exists():
|
||||||
|
return None
|
||||||
|
try:
|
||||||
|
return json.loads(meta_path.read_text())
|
||||||
|
except json.JSONDecodeError:
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
def run_workflow(
|
||||||
|
*,
|
||||||
|
label: str,
|
||||||
|
index_path: Path,
|
||||||
|
initial_paragraphs: list[str],
|
||||||
|
update_paragraphs: list[str],
|
||||||
|
model_name: str,
|
||||||
|
embedding_mode: str,
|
||||||
|
is_recompute: bool,
|
||||||
|
query: str,
|
||||||
|
top_k: int,
|
||||||
|
) -> dict[str, Any]:
|
||||||
|
prefix = f"[{label}] " if label else ""
|
||||||
|
|
||||||
|
ensure_index_dir(index_path)
|
||||||
|
cleanup_index_files(index_path)
|
||||||
|
|
||||||
|
print(f"{prefix}Building initial index...")
|
||||||
|
build_initial_index(
|
||||||
|
index_path,
|
||||||
|
initial_paragraphs,
|
||||||
|
model_name,
|
||||||
|
embedding_mode,
|
||||||
|
is_recompute=is_recompute,
|
||||||
|
)
|
||||||
|
|
||||||
|
initial_size = index_file_size(index_path)
|
||||||
|
before_results = run_search(
|
||||||
|
index_path,
|
||||||
|
query,
|
||||||
|
top_k,
|
||||||
|
recompute_embeddings=is_recompute,
|
||||||
|
)
|
||||||
|
|
||||||
|
print(f"\n{prefix}Updating index with additional passages...")
|
||||||
|
update_index(
|
||||||
|
index_path,
|
||||||
|
start_id=len(initial_paragraphs),
|
||||||
|
paragraphs=update_paragraphs,
|
||||||
|
model_name=model_name,
|
||||||
|
embedding_mode=embedding_mode,
|
||||||
|
is_recompute=is_recompute,
|
||||||
|
)
|
||||||
|
|
||||||
|
after_results = run_search(
|
||||||
|
index_path,
|
||||||
|
query,
|
||||||
|
top_k,
|
||||||
|
recompute_embeddings=is_recompute,
|
||||||
|
)
|
||||||
|
updated_size = index_file_size(index_path)
|
||||||
|
|
||||||
|
return {
|
||||||
|
"initial_size": initial_size,
|
||||||
|
"updated_size": updated_size,
|
||||||
|
"delta": updated_size - initial_size,
|
||||||
|
"before_results": before_results,
|
||||||
|
"after_results": after_results,
|
||||||
|
"metadata": load_metadata_snapshot(index_path),
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def main() -> None:
|
||||||
|
parser = argparse.ArgumentParser(description=__doc__)
|
||||||
|
parser.add_argument(
|
||||||
|
"--initial-files",
|
||||||
|
type=Path,
|
||||||
|
nargs="+",
|
||||||
|
default=DEFAULT_INITIAL_FILES,
|
||||||
|
help="Initial document files (PDF/TXT) used to build the base index",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--index-path",
|
||||||
|
type=Path,
|
||||||
|
default=Path(".leann/examples/leann-demo.leann"),
|
||||||
|
help="Destination index path (default: .leann/examples/leann-demo.leann)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--initial-count",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="Number of chunks to use from the initial documents (default: 8)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--update-files",
|
||||||
|
type=Path,
|
||||||
|
nargs="*",
|
||||||
|
default=DEFAULT_UPDATE_FILES,
|
||||||
|
help="Additional documents to add during update (PDF/TXT)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--update-count",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="Number of chunks to append from update documents (default: 4)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--update-text",
|
||||||
|
type=str,
|
||||||
|
default=(
|
||||||
|
"LEANN (Lightweight Embedding ANN) is an indexing toolkit focused on "
|
||||||
|
"recompute-aware HNSW graphs, allowing embeddings to be regenerated "
|
||||||
|
"on demand to keep disk usage minimal."
|
||||||
|
),
|
||||||
|
help="Fallback text to append if --update-files is omitted",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--top-k",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="Number of results to show for each search (default: 4)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--query",
|
||||||
|
type=str,
|
||||||
|
default=DEFAULT_QUERY,
|
||||||
|
help="Query to run before/after the update",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--embedding-model",
|
||||||
|
type=str,
|
||||||
|
default="sentence-transformers/all-MiniLM-L6-v2",
|
||||||
|
help="Embedding model name",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--embedding-mode",
|
||||||
|
type=str,
|
||||||
|
default="sentence-transformers",
|
||||||
|
choices=["sentence-transformers", "openai", "mlx", "ollama"],
|
||||||
|
help="Embedding backend mode",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--compare-no-recompute",
|
||||||
|
dest="compare_no_recompute",
|
||||||
|
action="store_true",
|
||||||
|
help="Also run a baseline with is_recompute=False and report its index growth.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--skip-compare-no-recompute",
|
||||||
|
dest="compare_no_recompute",
|
||||||
|
action="store_false",
|
||||||
|
help="Skip building the no-recompute baseline.",
|
||||||
|
)
|
||||||
|
parser.set_defaults(compare_no_recompute=True)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
ensure_index_dir(args.index_path)
|
||||||
|
register_project_directory(REPO_ROOT)
|
||||||
|
|
||||||
|
initial_chunks = load_chunks_from_files(list(args.initial_files))
|
||||||
|
if not initial_chunks:
|
||||||
|
raise ValueError("No text chunks extracted from the initial files.")
|
||||||
|
|
||||||
|
initial = initial_chunks[: args.initial_count]
|
||||||
|
if not initial:
|
||||||
|
raise ValueError("Initial chunk set is empty after applying --initial-count.")
|
||||||
|
|
||||||
|
if args.update_files:
|
||||||
|
update_chunks = load_chunks_from_files(list(args.update_files))
|
||||||
|
if not update_chunks:
|
||||||
|
raise ValueError("No text chunks extracted from the update files.")
|
||||||
|
to_add = update_chunks[: args.update_count]
|
||||||
|
else:
|
||||||
|
if not args.update_text:
|
||||||
|
raise ValueError("Provide --update-files or --update-text for the update step.")
|
||||||
|
to_add = [args.update_text]
|
||||||
|
if not to_add:
|
||||||
|
raise ValueError("Update chunk set is empty after applying --update-count.")
|
||||||
|
|
||||||
|
recompute_stats = run_workflow(
|
||||||
|
label="recompute",
|
||||||
|
index_path=args.index_path,
|
||||||
|
initial_paragraphs=initial,
|
||||||
|
update_paragraphs=to_add,
|
||||||
|
model_name=args.embedding_model,
|
||||||
|
embedding_mode=args.embedding_mode,
|
||||||
|
is_recompute=True,
|
||||||
|
query=args.query,
|
||||||
|
top_k=args.top_k,
|
||||||
|
)
|
||||||
|
|
||||||
|
print_results("initial search", recompute_stats["before_results"])
|
||||||
|
print_results("after update", recompute_stats["after_results"])
|
||||||
|
print(
|
||||||
|
f"\n[recompute] Index file size change: {recompute_stats['initial_size']} -> {recompute_stats['updated_size']} bytes"
|
||||||
|
f" (Δ {recompute_stats['delta']})"
|
||||||
|
)
|
||||||
|
|
||||||
|
if recompute_stats["metadata"]:
|
||||||
|
meta_view = {k: recompute_stats["metadata"].get(k) for k in ("is_compact", "is_pruned")}
|
||||||
|
print("[recompute] metadata snapshot:")
|
||||||
|
print(json.dumps(meta_view, indent=2))
|
||||||
|
|
||||||
|
if args.compare_no_recompute:
|
||||||
|
baseline_path = (
|
||||||
|
args.index_path.parent / f"{args.index_path.stem}-norecompute{args.index_path.suffix}"
|
||||||
|
)
|
||||||
|
baseline_stats = run_workflow(
|
||||||
|
label="no-recompute",
|
||||||
|
index_path=baseline_path,
|
||||||
|
initial_paragraphs=initial,
|
||||||
|
update_paragraphs=to_add,
|
||||||
|
model_name=args.embedding_model,
|
||||||
|
embedding_mode=args.embedding_mode,
|
||||||
|
is_recompute=False,
|
||||||
|
query=args.query,
|
||||||
|
top_k=args.top_k,
|
||||||
|
)
|
||||||
|
|
||||||
|
print(
|
||||||
|
f"\n[no-recompute] Index file size change: {baseline_stats['initial_size']} -> {baseline_stats['updated_size']} bytes"
|
||||||
|
f" (Δ {baseline_stats['delta']})"
|
||||||
|
)
|
||||||
|
|
||||||
|
after_texts = [res.text for res in recompute_stats["after_results"]]
|
||||||
|
baseline_after_texts = [res.text for res in baseline_stats["after_results"]]
|
||||||
|
if after_texts == baseline_after_texts:
|
||||||
|
print(
|
||||||
|
"[no-recompute] Search results match recompute baseline; see above for the shared output."
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
print("[no-recompute] WARNING: search results differ from recompute baseline.")
|
||||||
|
|
||||||
|
if baseline_stats["metadata"]:
|
||||||
|
meta_view = {k: baseline_stats["metadata"].get(k) for k in ("is_compact", "is_pruned")}
|
||||||
|
print("[no-recompute] metadata snapshot:")
|
||||||
|
print(json.dumps(meta_view, indent=2))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
@@ -10,7 +10,7 @@ import sys
|
|||||||
import threading
|
import threading
|
||||||
import time
|
import time
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Optional
|
from typing import Any, Optional
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import zmq
|
import zmq
|
||||||
@@ -32,6 +32,16 @@ if not logger.handlers:
|
|||||||
logger.propagate = False
|
logger.propagate = False
|
||||||
|
|
||||||
|
|
||||||
|
_RAW_PROVIDER_OPTIONS = os.getenv("LEANN_EMBEDDING_OPTIONS")
|
||||||
|
try:
|
||||||
|
PROVIDER_OPTIONS: dict[str, Any] = (
|
||||||
|
json.loads(_RAW_PROVIDER_OPTIONS) if _RAW_PROVIDER_OPTIONS else {}
|
||||||
|
)
|
||||||
|
except json.JSONDecodeError:
|
||||||
|
logger.warning("Failed to parse LEANN_EMBEDDING_OPTIONS; ignoring provider options")
|
||||||
|
PROVIDER_OPTIONS = {}
|
||||||
|
|
||||||
|
|
||||||
def create_diskann_embedding_server(
|
def create_diskann_embedding_server(
|
||||||
passages_file: Optional[str] = None,
|
passages_file: Optional[str] = None,
|
||||||
zmq_port: int = 5555,
|
zmq_port: int = 5555,
|
||||||
@@ -181,7 +191,12 @@ def create_diskann_embedding_server(
|
|||||||
logger.debug(f"Text lengths: {[len(t) for t in texts[:5]]}") # Show first 5
|
logger.debug(f"Text lengths: {[len(t) for t in texts[:5]]}") # Show first 5
|
||||||
|
|
||||||
# Process embeddings using unified computation
|
# Process embeddings using unified computation
|
||||||
embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
|
embeddings = compute_embeddings(
|
||||||
|
texts,
|
||||||
|
model_name,
|
||||||
|
mode=embedding_mode,
|
||||||
|
provider_options=PROVIDER_OPTIONS,
|
||||||
|
)
|
||||||
logger.info(
|
logger.info(
|
||||||
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
|
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
|
||||||
)
|
)
|
||||||
@@ -296,7 +311,12 @@ def create_diskann_embedding_server(
|
|||||||
continue
|
continue
|
||||||
|
|
||||||
# Process the request
|
# Process the request
|
||||||
embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
|
embeddings = compute_embeddings(
|
||||||
|
texts,
|
||||||
|
model_name,
|
||||||
|
mode=embedding_mode,
|
||||||
|
provider_options=PROVIDER_OPTIONS,
|
||||||
|
)
|
||||||
logger.info(f"Computed embeddings shape: {embeddings.shape}")
|
logger.info(f"Computed embeddings shape: {embeddings.shape}")
|
||||||
|
|
||||||
# Validation
|
# Validation
|
||||||
|
|||||||
@@ -5,6 +5,8 @@ import os
|
|||||||
import struct
|
import struct
|
||||||
import sys
|
import sys
|
||||||
import time
|
import time
|
||||||
|
from dataclasses import dataclass
|
||||||
|
from typing import Any, Optional
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
@@ -237,6 +239,288 @@ def write_compact_format(
|
|||||||
f_out.write(storage_data)
|
f_out.write(storage_data)
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class HNSWComponents:
|
||||||
|
original_hnsw_data: dict[str, Any]
|
||||||
|
assign_probas_np: np.ndarray
|
||||||
|
cum_nneighbor_per_level_np: np.ndarray
|
||||||
|
levels_np: np.ndarray
|
||||||
|
is_compact: bool
|
||||||
|
compact_level_ptr: Optional[np.ndarray] = None
|
||||||
|
compact_node_offsets_np: Optional[np.ndarray] = None
|
||||||
|
compact_neighbors_data: Optional[list[int]] = None
|
||||||
|
offsets_np: Optional[np.ndarray] = None
|
||||||
|
neighbors_np: Optional[np.ndarray] = None
|
||||||
|
storage_fourcc: int = NULL_INDEX_FOURCC
|
||||||
|
storage_data: bytes = b""
|
||||||
|
|
||||||
|
|
||||||
|
def _read_hnsw_structure(f) -> HNSWComponents:
|
||||||
|
original_hnsw_data: dict[str, Any] = {}
|
||||||
|
|
||||||
|
hnsw_index_fourcc = read_struct(f, "<I")
|
||||||
|
if hnsw_index_fourcc not in EXPECTED_HNSW_FOURCCS:
|
||||||
|
raise ValueError(
|
||||||
|
f"Unexpected HNSW FourCC: {hnsw_index_fourcc:08x}. Expected one of {EXPECTED_HNSW_FOURCCS}."
|
||||||
|
)
|
||||||
|
|
||||||
|
original_hnsw_data["index_fourcc"] = hnsw_index_fourcc
|
||||||
|
original_hnsw_data["d"] = read_struct(f, "<i")
|
||||||
|
original_hnsw_data["ntotal"] = read_struct(f, "<q")
|
||||||
|
original_hnsw_data["dummy1"] = read_struct(f, "<q")
|
||||||
|
original_hnsw_data["dummy2"] = read_struct(f, "<q")
|
||||||
|
original_hnsw_data["is_trained"] = read_struct(f, "?")
|
||||||
|
original_hnsw_data["metric_type"] = read_struct(f, "<i")
|
||||||
|
original_hnsw_data["metric_arg"] = 0.0
|
||||||
|
if original_hnsw_data["metric_type"] > 1:
|
||||||
|
original_hnsw_data["metric_arg"] = read_struct(f, "<f")
|
||||||
|
|
||||||
|
assign_probas_np = read_numpy_vector(f, np.float64, "d")
|
||||||
|
cum_nneighbor_per_level_np = read_numpy_vector(f, np.int32, "i")
|
||||||
|
levels_np = read_numpy_vector(f, np.int32, "i")
|
||||||
|
|
||||||
|
ntotal = len(levels_np)
|
||||||
|
if ntotal != original_hnsw_data["ntotal"]:
|
||||||
|
original_hnsw_data["ntotal"] = ntotal
|
||||||
|
|
||||||
|
pos_before_compact = f.tell()
|
||||||
|
is_compact_flag = None
|
||||||
|
try:
|
||||||
|
is_compact_flag = read_struct(f, "<?")
|
||||||
|
except EOFError:
|
||||||
|
is_compact_flag = None
|
||||||
|
|
||||||
|
if is_compact_flag:
|
||||||
|
compact_level_ptr = read_numpy_vector(f, np.uint64, "Q")
|
||||||
|
compact_node_offsets_np = read_numpy_vector(f, np.uint64, "Q")
|
||||||
|
|
||||||
|
original_hnsw_data["entry_point"] = read_struct(f, "<i")
|
||||||
|
original_hnsw_data["max_level"] = read_struct(f, "<i")
|
||||||
|
original_hnsw_data["efConstruction"] = read_struct(f, "<i")
|
||||||
|
original_hnsw_data["efSearch"] = read_struct(f, "<i")
|
||||||
|
original_hnsw_data["dummy_upper_beam"] = read_struct(f, "<i")
|
||||||
|
|
||||||
|
storage_fourcc = read_struct(f, "<I")
|
||||||
|
compact_neighbors_data_np = read_numpy_vector(f, np.int32, "i")
|
||||||
|
compact_neighbors_data = compact_neighbors_data_np.tolist()
|
||||||
|
storage_data = f.read()
|
||||||
|
|
||||||
|
return HNSWComponents(
|
||||||
|
original_hnsw_data=original_hnsw_data,
|
||||||
|
assign_probas_np=assign_probas_np,
|
||||||
|
cum_nneighbor_per_level_np=cum_nneighbor_per_level_np,
|
||||||
|
levels_np=levels_np,
|
||||||
|
is_compact=True,
|
||||||
|
compact_level_ptr=compact_level_ptr,
|
||||||
|
compact_node_offsets_np=compact_node_offsets_np,
|
||||||
|
compact_neighbors_data=compact_neighbors_data,
|
||||||
|
storage_fourcc=storage_fourcc,
|
||||||
|
storage_data=storage_data,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Non-compact case
|
||||||
|
f.seek(pos_before_compact)
|
||||||
|
|
||||||
|
pos_before_probe = f.tell()
|
||||||
|
try:
|
||||||
|
suspected_flag = read_struct(f, "<B")
|
||||||
|
if suspected_flag != 0x00:
|
||||||
|
f.seek(pos_before_probe)
|
||||||
|
except EOFError:
|
||||||
|
f.seek(pos_before_probe)
|
||||||
|
|
||||||
|
offsets_np = read_numpy_vector(f, np.uint64, "Q")
|
||||||
|
neighbors_np = read_numpy_vector(f, np.int32, "i")
|
||||||
|
|
||||||
|
original_hnsw_data["entry_point"] = read_struct(f, "<i")
|
||||||
|
original_hnsw_data["max_level"] = read_struct(f, "<i")
|
||||||
|
original_hnsw_data["efConstruction"] = read_struct(f, "<i")
|
||||||
|
original_hnsw_data["efSearch"] = read_struct(f, "<i")
|
||||||
|
original_hnsw_data["dummy_upper_beam"] = read_struct(f, "<i")
|
||||||
|
|
||||||
|
storage_fourcc = NULL_INDEX_FOURCC
|
||||||
|
storage_data = b""
|
||||||
|
try:
|
||||||
|
storage_fourcc = read_struct(f, "<I")
|
||||||
|
storage_data = f.read()
|
||||||
|
except EOFError:
|
||||||
|
storage_fourcc = NULL_INDEX_FOURCC
|
||||||
|
|
||||||
|
return HNSWComponents(
|
||||||
|
original_hnsw_data=original_hnsw_data,
|
||||||
|
assign_probas_np=assign_probas_np,
|
||||||
|
cum_nneighbor_per_level_np=cum_nneighbor_per_level_np,
|
||||||
|
levels_np=levels_np,
|
||||||
|
is_compact=False,
|
||||||
|
offsets_np=offsets_np,
|
||||||
|
neighbors_np=neighbors_np,
|
||||||
|
storage_fourcc=storage_fourcc,
|
||||||
|
storage_data=storage_data,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def _read_hnsw_structure_from_file(path: str) -> HNSWComponents:
|
||||||
|
with open(path, "rb") as f:
|
||||||
|
return _read_hnsw_structure(f)
|
||||||
|
|
||||||
|
|
||||||
|
def write_original_format(
|
||||||
|
f_out,
|
||||||
|
original_hnsw_data,
|
||||||
|
assign_probas_np,
|
||||||
|
cum_nneighbor_per_level_np,
|
||||||
|
levels_np,
|
||||||
|
offsets_np,
|
||||||
|
neighbors_np,
|
||||||
|
storage_fourcc,
|
||||||
|
storage_data,
|
||||||
|
):
|
||||||
|
"""Write non-compact HNSW data in original FAISS order."""
|
||||||
|
|
||||||
|
f_out.write(struct.pack("<I", original_hnsw_data["index_fourcc"]))
|
||||||
|
f_out.write(struct.pack("<i", original_hnsw_data["d"]))
|
||||||
|
f_out.write(struct.pack("<q", original_hnsw_data["ntotal"]))
|
||||||
|
f_out.write(struct.pack("<q", original_hnsw_data["dummy1"]))
|
||||||
|
f_out.write(struct.pack("<q", original_hnsw_data["dummy2"]))
|
||||||
|
f_out.write(struct.pack("<?", original_hnsw_data["is_trained"]))
|
||||||
|
f_out.write(struct.pack("<i", original_hnsw_data["metric_type"]))
|
||||||
|
if original_hnsw_data["metric_type"] > 1:
|
||||||
|
f_out.write(struct.pack("<f", original_hnsw_data["metric_arg"]))
|
||||||
|
|
||||||
|
write_numpy_vector(f_out, assign_probas_np, "d")
|
||||||
|
write_numpy_vector(f_out, cum_nneighbor_per_level_np, "i")
|
||||||
|
write_numpy_vector(f_out, levels_np, "i")
|
||||||
|
|
||||||
|
write_numpy_vector(f_out, offsets_np, "Q")
|
||||||
|
write_numpy_vector(f_out, neighbors_np, "i")
|
||||||
|
|
||||||
|
f_out.write(struct.pack("<i", original_hnsw_data["entry_point"]))
|
||||||
|
f_out.write(struct.pack("<i", original_hnsw_data["max_level"]))
|
||||||
|
f_out.write(struct.pack("<i", original_hnsw_data["efConstruction"]))
|
||||||
|
f_out.write(struct.pack("<i", original_hnsw_data["efSearch"]))
|
||||||
|
f_out.write(struct.pack("<i", original_hnsw_data["dummy_upper_beam"]))
|
||||||
|
|
||||||
|
f_out.write(struct.pack("<I", storage_fourcc))
|
||||||
|
if storage_fourcc != NULL_INDEX_FOURCC and storage_data:
|
||||||
|
f_out.write(storage_data)
|
||||||
|
|
||||||
|
|
||||||
|
def prune_hnsw_embeddings(input_filename: str, output_filename: str) -> bool:
|
||||||
|
"""Rewrite an HNSW index while dropping the embedded storage section."""
|
||||||
|
|
||||||
|
start_time = time.time()
|
||||||
|
try:
|
||||||
|
with open(input_filename, "rb") as f_in, open(output_filename, "wb") as f_out:
|
||||||
|
original_hnsw_data: dict[str, Any] = {}
|
||||||
|
|
||||||
|
hnsw_index_fourcc = read_struct(f_in, "<I")
|
||||||
|
if hnsw_index_fourcc not in EXPECTED_HNSW_FOURCCS:
|
||||||
|
print(
|
||||||
|
f"Error: Expected HNSW Index FourCC ({list(EXPECTED_HNSW_FOURCCS)}), got {hnsw_index_fourcc:08x}.",
|
||||||
|
file=sys.stderr,
|
||||||
|
)
|
||||||
|
return False
|
||||||
|
|
||||||
|
original_hnsw_data["index_fourcc"] = hnsw_index_fourcc
|
||||||
|
original_hnsw_data["d"] = read_struct(f_in, "<i")
|
||||||
|
original_hnsw_data["ntotal"] = read_struct(f_in, "<q")
|
||||||
|
original_hnsw_data["dummy1"] = read_struct(f_in, "<q")
|
||||||
|
original_hnsw_data["dummy2"] = read_struct(f_in, "<q")
|
||||||
|
original_hnsw_data["is_trained"] = read_struct(f_in, "?")
|
||||||
|
original_hnsw_data["metric_type"] = read_struct(f_in, "<i")
|
||||||
|
original_hnsw_data["metric_arg"] = 0.0
|
||||||
|
if original_hnsw_data["metric_type"] > 1:
|
||||||
|
original_hnsw_data["metric_arg"] = read_struct(f_in, "<f")
|
||||||
|
|
||||||
|
assign_probas_np = read_numpy_vector(f_in, np.float64, "d")
|
||||||
|
cum_nneighbor_per_level_np = read_numpy_vector(f_in, np.int32, "i")
|
||||||
|
levels_np = read_numpy_vector(f_in, np.int32, "i")
|
||||||
|
|
||||||
|
ntotal = len(levels_np)
|
||||||
|
if ntotal != original_hnsw_data["ntotal"]:
|
||||||
|
original_hnsw_data["ntotal"] = ntotal
|
||||||
|
|
||||||
|
pos_before_compact = f_in.tell()
|
||||||
|
is_compact_flag = None
|
||||||
|
try:
|
||||||
|
is_compact_flag = read_struct(f_in, "<?")
|
||||||
|
except EOFError:
|
||||||
|
is_compact_flag = None
|
||||||
|
|
||||||
|
if is_compact_flag:
|
||||||
|
compact_level_ptr = read_numpy_vector(f_in, np.uint64, "Q")
|
||||||
|
compact_node_offsets_np = read_numpy_vector(f_in, np.uint64, "Q")
|
||||||
|
|
||||||
|
original_hnsw_data["entry_point"] = read_struct(f_in, "<i")
|
||||||
|
original_hnsw_data["max_level"] = read_struct(f_in, "<i")
|
||||||
|
original_hnsw_data["efConstruction"] = read_struct(f_in, "<i")
|
||||||
|
original_hnsw_data["efSearch"] = read_struct(f_in, "<i")
|
||||||
|
original_hnsw_data["dummy_upper_beam"] = read_struct(f_in, "<i")
|
||||||
|
|
||||||
|
_storage_fourcc = read_struct(f_in, "<I")
|
||||||
|
compact_neighbors_data_np = read_numpy_vector(f_in, np.int32, "i")
|
||||||
|
compact_neighbors_data = compact_neighbors_data_np.tolist()
|
||||||
|
_storage_data = f_in.read()
|
||||||
|
|
||||||
|
write_compact_format(
|
||||||
|
f_out,
|
||||||
|
original_hnsw_data,
|
||||||
|
assign_probas_np,
|
||||||
|
cum_nneighbor_per_level_np,
|
||||||
|
levels_np,
|
||||||
|
compact_level_ptr,
|
||||||
|
compact_node_offsets_np,
|
||||||
|
compact_neighbors_data,
|
||||||
|
NULL_INDEX_FOURCC,
|
||||||
|
b"",
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
f_in.seek(pos_before_compact)
|
||||||
|
|
||||||
|
pos_before_probe = f_in.tell()
|
||||||
|
try:
|
||||||
|
suspected_flag = read_struct(f_in, "<B")
|
||||||
|
if suspected_flag != 0x00:
|
||||||
|
f_in.seek(pos_before_probe)
|
||||||
|
except EOFError:
|
||||||
|
f_in.seek(pos_before_probe)
|
||||||
|
|
||||||
|
offsets_np = read_numpy_vector(f_in, np.uint64, "Q")
|
||||||
|
neighbors_np = read_numpy_vector(f_in, np.int32, "i")
|
||||||
|
|
||||||
|
original_hnsw_data["entry_point"] = read_struct(f_in, "<i")
|
||||||
|
original_hnsw_data["max_level"] = read_struct(f_in, "<i")
|
||||||
|
original_hnsw_data["efConstruction"] = read_struct(f_in, "<i")
|
||||||
|
original_hnsw_data["efSearch"] = read_struct(f_in, "<i")
|
||||||
|
original_hnsw_data["dummy_upper_beam"] = read_struct(f_in, "<i")
|
||||||
|
|
||||||
|
_storage_fourcc = None
|
||||||
|
_storage_data = b""
|
||||||
|
try:
|
||||||
|
_storage_fourcc = read_struct(f_in, "<I")
|
||||||
|
_storage_data = f_in.read()
|
||||||
|
except EOFError:
|
||||||
|
_storage_fourcc = NULL_INDEX_FOURCC
|
||||||
|
|
||||||
|
write_original_format(
|
||||||
|
f_out,
|
||||||
|
original_hnsw_data,
|
||||||
|
assign_probas_np,
|
||||||
|
cum_nneighbor_per_level_np,
|
||||||
|
levels_np,
|
||||||
|
offsets_np,
|
||||||
|
neighbors_np,
|
||||||
|
NULL_INDEX_FOURCC,
|
||||||
|
b"",
|
||||||
|
)
|
||||||
|
|
||||||
|
print(f"[{time.time() - start_time:.2f}s] Pruned embeddings from {input_filename}")
|
||||||
|
return True
|
||||||
|
except Exception as exc:
|
||||||
|
print(f"Failed to prune embeddings: {exc}", file=sys.stderr)
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
# --- Main Conversion Logic ---
|
# --- Main Conversion Logic ---
|
||||||
|
|
||||||
|
|
||||||
@@ -700,6 +984,29 @@ def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=
|
|||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
def prune_hnsw_embeddings_inplace(index_filename: str) -> bool:
|
||||||
|
"""Convenience wrapper to prune embeddings in-place."""
|
||||||
|
|
||||||
|
temp_path = f"{index_filename}.prune.tmp"
|
||||||
|
success = prune_hnsw_embeddings(index_filename, temp_path)
|
||||||
|
if success:
|
||||||
|
try:
|
||||||
|
os.replace(temp_path, index_filename)
|
||||||
|
except Exception as exc: # pragma: no cover - defensive
|
||||||
|
logger.error(f"Failed to replace original index with pruned version: {exc}")
|
||||||
|
try:
|
||||||
|
os.remove(temp_path)
|
||||||
|
except OSError:
|
||||||
|
pass
|
||||||
|
return False
|
||||||
|
else:
|
||||||
|
try:
|
||||||
|
os.remove(temp_path)
|
||||||
|
except OSError:
|
||||||
|
pass
|
||||||
|
return success
|
||||||
|
|
||||||
|
|
||||||
# --- Script Execution ---
|
# --- Script Execution ---
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
parser = argparse.ArgumentParser(
|
parser = argparse.ArgumentParser(
|
||||||
|
|||||||
@@ -14,7 +14,7 @@ from leann.interface import (
|
|||||||
from leann.registry import register_backend
|
from leann.registry import register_backend
|
||||||
from leann.searcher_base import BaseSearcher
|
from leann.searcher_base import BaseSearcher
|
||||||
|
|
||||||
from .convert_to_csr import convert_hnsw_graph_to_csr
|
from .convert_to_csr import convert_hnsw_graph_to_csr, prune_hnsw_embeddings_inplace
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
@@ -92,6 +92,8 @@ class HNSWBuilder(LeannBackendBuilderInterface):
|
|||||||
|
|
||||||
if self.is_compact:
|
if self.is_compact:
|
||||||
self._convert_to_csr(index_file)
|
self._convert_to_csr(index_file)
|
||||||
|
elif self.is_recompute:
|
||||||
|
prune_hnsw_embeddings_inplace(str(index_file))
|
||||||
|
|
||||||
def _convert_to_csr(self, index_file: Path):
|
def _convert_to_csr(self, index_file: Path):
|
||||||
"""Convert built index to CSR format"""
|
"""Convert built index to CSR format"""
|
||||||
@@ -133,10 +135,10 @@ class HNSWSearcher(BaseSearcher):
|
|||||||
if metric_enum is None:
|
if metric_enum is None:
|
||||||
raise ValueError(f"Unsupported distance_metric '{self.distance_metric}'.")
|
raise ValueError(f"Unsupported distance_metric '{self.distance_metric}'.")
|
||||||
|
|
||||||
self.is_compact, self.is_pruned = (
|
backend_meta_kwargs = self.meta.get("backend_kwargs", {})
|
||||||
self.meta.get("is_compact", True),
|
self.is_compact = self.meta.get("is_compact", backend_meta_kwargs.get("is_compact", True))
|
||||||
self.meta.get("is_pruned", True),
|
default_pruned = backend_meta_kwargs.get("is_recompute", self.is_compact)
|
||||||
)
|
self.is_pruned = bool(self.meta.get("is_pruned", default_pruned))
|
||||||
|
|
||||||
index_file = self.index_dir / f"{self.index_path.stem}.index"
|
index_file = self.index_dir / f"{self.index_path.stem}.index"
|
||||||
if not index_file.exists():
|
if not index_file.exists():
|
||||||
|
|||||||
@@ -10,7 +10,7 @@ import sys
|
|||||||
import threading
|
import threading
|
||||||
import time
|
import time
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Optional
|
from typing import Any, Optional
|
||||||
|
|
||||||
import msgpack
|
import msgpack
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@@ -24,13 +24,35 @@ logger = logging.getLogger(__name__)
|
|||||||
log_level = getattr(logging, LOG_LEVEL, logging.WARNING)
|
log_level = getattr(logging, LOG_LEVEL, logging.WARNING)
|
||||||
logger.setLevel(log_level)
|
logger.setLevel(log_level)
|
||||||
|
|
||||||
# Ensure we have a handler if none exists
|
# Ensure we have handlers if none exist
|
||||||
if not logger.handlers:
|
if not logger.handlers:
|
||||||
handler = logging.StreamHandler()
|
stream_handler = logging.StreamHandler()
|
||||||
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
|
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
|
||||||
handler.setFormatter(formatter)
|
stream_handler.setFormatter(formatter)
|
||||||
logger.addHandler(handler)
|
logger.addHandler(stream_handler)
|
||||||
logger.propagate = False
|
|
||||||
|
log_path = os.getenv("LEANN_HNSW_LOG_PATH")
|
||||||
|
if log_path:
|
||||||
|
try:
|
||||||
|
file_handler = logging.FileHandler(log_path, mode="a", encoding="utf-8")
|
||||||
|
file_formatter = logging.Formatter(
|
||||||
|
"%(asctime)s - %(levelname)s - [pid=%(process)d] %(message)s"
|
||||||
|
)
|
||||||
|
file_handler.setFormatter(file_formatter)
|
||||||
|
logger.addHandler(file_handler)
|
||||||
|
except Exception as exc: # pragma: no cover - best effort logging
|
||||||
|
logger.warning(f"Failed to attach file handler for log path {log_path}: {exc}")
|
||||||
|
|
||||||
|
logger.propagate = False
|
||||||
|
|
||||||
|
_RAW_PROVIDER_OPTIONS = os.getenv("LEANN_EMBEDDING_OPTIONS")
|
||||||
|
try:
|
||||||
|
PROVIDER_OPTIONS: dict[str, Any] = (
|
||||||
|
json.loads(_RAW_PROVIDER_OPTIONS) if _RAW_PROVIDER_OPTIONS else {}
|
||||||
|
)
|
||||||
|
except json.JSONDecodeError:
|
||||||
|
logger.warning("Failed to parse LEANN_EMBEDDING_OPTIONS; ignoring provider options")
|
||||||
|
PROVIDER_OPTIONS = {}
|
||||||
|
|
||||||
|
|
||||||
def create_hnsw_embedding_server(
|
def create_hnsw_embedding_server(
|
||||||
@@ -138,7 +160,12 @@ def create_hnsw_embedding_server(
|
|||||||
):
|
):
|
||||||
last_request_type = "text"
|
last_request_type = "text"
|
||||||
last_request_length = len(request)
|
last_request_length = len(request)
|
||||||
embeddings = compute_embeddings(request, model_name, mode=embedding_mode)
|
embeddings = compute_embeddings(
|
||||||
|
request,
|
||||||
|
model_name,
|
||||||
|
mode=embedding_mode,
|
||||||
|
provider_options=PROVIDER_OPTIONS,
|
||||||
|
)
|
||||||
rep_socket.send(msgpack.packb(embeddings.tolist()))
|
rep_socket.send(msgpack.packb(embeddings.tolist()))
|
||||||
e2e_end = time.time()
|
e2e_end = time.time()
|
||||||
logger.info(f"⏱️ Text embedding E2E time: {e2e_end - e2e_start:.6f}s")
|
logger.info(f"⏱️ Text embedding E2E time: {e2e_end - e2e_start:.6f}s")
|
||||||
@@ -187,7 +214,10 @@ def create_hnsw_embedding_server(
|
|||||||
if texts:
|
if texts:
|
||||||
try:
|
try:
|
||||||
embeddings = compute_embeddings(
|
embeddings = compute_embeddings(
|
||||||
texts, model_name, mode=embedding_mode
|
texts,
|
||||||
|
model_name,
|
||||||
|
mode=embedding_mode,
|
||||||
|
provider_options=PROVIDER_OPTIONS,
|
||||||
)
|
)
|
||||||
logger.info(
|
logger.info(
|
||||||
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
|
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
|
||||||
@@ -252,7 +282,12 @@ def create_hnsw_embedding_server(
|
|||||||
|
|
||||||
if texts:
|
if texts:
|
||||||
try:
|
try:
|
||||||
embeddings = compute_embeddings(texts, model_name, mode=embedding_mode)
|
embeddings = compute_embeddings(
|
||||||
|
texts,
|
||||||
|
model_name,
|
||||||
|
mode=embedding_mode,
|
||||||
|
provider_options=PROVIDER_OPTIONS,
|
||||||
|
)
|
||||||
logger.info(
|
logger.info(
|
||||||
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
|
f"Computed embeddings for {len(texts)} texts, shape: {embeddings.shape}"
|
||||||
)
|
)
|
||||||
|
|||||||
Submodule packages/leann-backend-hnsw/third_party/faiss updated: ed96ff7dba...1d51f0c074
@@ -15,6 +15,7 @@ from pathlib import Path
|
|||||||
from typing import Any, Literal, Optional, Union
|
from typing import Any, Literal, Optional, Union
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
from leann_backend_hnsw.convert_to_csr import prune_hnsw_embeddings_inplace
|
||||||
|
|
||||||
from leann.interface import LeannBackendSearcherInterface
|
from leann.interface import LeannBackendSearcherInterface
|
||||||
|
|
||||||
@@ -38,6 +39,7 @@ def compute_embeddings(
|
|||||||
use_server: bool = True,
|
use_server: bool = True,
|
||||||
port: Optional[int] = None,
|
port: Optional[int] = None,
|
||||||
is_build=False,
|
is_build=False,
|
||||||
|
provider_options: Optional[dict[str, Any]] = None,
|
||||||
) -> np.ndarray:
|
) -> np.ndarray:
|
||||||
"""
|
"""
|
||||||
Computes embeddings using different backends.
|
Computes embeddings using different backends.
|
||||||
@@ -71,6 +73,7 @@ def compute_embeddings(
|
|||||||
model_name,
|
model_name,
|
||||||
mode=mode,
|
mode=mode,
|
||||||
is_build=is_build,
|
is_build=is_build,
|
||||||
|
provider_options=provider_options,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@@ -277,6 +280,7 @@ class LeannBuilder:
|
|||||||
embedding_model: str = "facebook/contriever",
|
embedding_model: str = "facebook/contriever",
|
||||||
dimensions: Optional[int] = None,
|
dimensions: Optional[int] = None,
|
||||||
embedding_mode: str = "sentence-transformers",
|
embedding_mode: str = "sentence-transformers",
|
||||||
|
embedding_options: Optional[dict[str, Any]] = None,
|
||||||
**backend_kwargs,
|
**backend_kwargs,
|
||||||
):
|
):
|
||||||
self.backend_name = backend_name
|
self.backend_name = backend_name
|
||||||
@@ -299,6 +303,7 @@ class LeannBuilder:
|
|||||||
self.embedding_model = embedding_model
|
self.embedding_model = embedding_model
|
||||||
self.dimensions = dimensions
|
self.dimensions = dimensions
|
||||||
self.embedding_mode = embedding_mode
|
self.embedding_mode = embedding_mode
|
||||||
|
self.embedding_options = embedding_options or {}
|
||||||
|
|
||||||
# Check if we need to use cosine distance for normalized embeddings
|
# Check if we need to use cosine distance for normalized embeddings
|
||||||
normalized_embeddings_models = {
|
normalized_embeddings_models = {
|
||||||
@@ -406,6 +411,7 @@ class LeannBuilder:
|
|||||||
self.embedding_model,
|
self.embedding_model,
|
||||||
self.embedding_mode,
|
self.embedding_mode,
|
||||||
use_server=False,
|
use_server=False,
|
||||||
|
provider_options=self.embedding_options,
|
||||||
)[0]
|
)[0]
|
||||||
)
|
)
|
||||||
path = Path(index_path)
|
path = Path(index_path)
|
||||||
@@ -445,6 +451,7 @@ class LeannBuilder:
|
|||||||
self.embedding_mode,
|
self.embedding_mode,
|
||||||
use_server=False,
|
use_server=False,
|
||||||
is_build=True,
|
is_build=True,
|
||||||
|
provider_options=self.embedding_options,
|
||||||
)
|
)
|
||||||
string_ids = [chunk["id"] for chunk in self.chunks]
|
string_ids = [chunk["id"] for chunk in self.chunks]
|
||||||
current_backend_kwargs = {**self.backend_kwargs, "dimensions": self.dimensions}
|
current_backend_kwargs = {**self.backend_kwargs, "dimensions": self.dimensions}
|
||||||
@@ -471,14 +478,15 @@ class LeannBuilder:
|
|||||||
],
|
],
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if self.embedding_options:
|
||||||
|
meta_data["embedding_options"] = self.embedding_options
|
||||||
|
|
||||||
# Add storage status flags for HNSW backend
|
# Add storage status flags for HNSW backend
|
||||||
if self.backend_name == "hnsw":
|
if self.backend_name == "hnsw":
|
||||||
is_compact = self.backend_kwargs.get("is_compact", True)
|
is_compact = self.backend_kwargs.get("is_compact", True)
|
||||||
is_recompute = self.backend_kwargs.get("is_recompute", True)
|
is_recompute = self.backend_kwargs.get("is_recompute", True)
|
||||||
meta_data["is_compact"] = is_compact
|
meta_data["is_compact"] = is_compact
|
||||||
meta_data["is_pruned"] = (
|
meta_data["is_pruned"] = bool(is_recompute)
|
||||||
is_compact and is_recompute
|
|
||||||
) # Pruned only if compact and recompute
|
|
||||||
with open(leann_meta_path, "w", encoding="utf-8") as f:
|
with open(leann_meta_path, "w", encoding="utf-8") as f:
|
||||||
json.dump(meta_data, f, indent=2)
|
json.dump(meta_data, f, indent=2)
|
||||||
|
|
||||||
@@ -593,18 +601,166 @@ class LeannBuilder:
|
|||||||
"embeddings_source": str(embeddings_file),
|
"embeddings_source": str(embeddings_file),
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if self.embedding_options:
|
||||||
|
meta_data["embedding_options"] = self.embedding_options
|
||||||
|
|
||||||
# Add storage status flags for HNSW backend
|
# Add storage status flags for HNSW backend
|
||||||
if self.backend_name == "hnsw":
|
if self.backend_name == "hnsw":
|
||||||
is_compact = self.backend_kwargs.get("is_compact", True)
|
is_compact = self.backend_kwargs.get("is_compact", True)
|
||||||
is_recompute = self.backend_kwargs.get("is_recompute", True)
|
is_recompute = self.backend_kwargs.get("is_recompute", True)
|
||||||
meta_data["is_compact"] = is_compact
|
meta_data["is_compact"] = is_compact
|
||||||
meta_data["is_pruned"] = is_compact and is_recompute
|
meta_data["is_pruned"] = bool(is_recompute)
|
||||||
|
|
||||||
with open(leann_meta_path, "w", encoding="utf-8") as f:
|
with open(leann_meta_path, "w", encoding="utf-8") as f:
|
||||||
json.dump(meta_data, f, indent=2)
|
json.dump(meta_data, f, indent=2)
|
||||||
|
|
||||||
logger.info(f"Index built successfully from precomputed embeddings: {index_path}")
|
logger.info(f"Index built successfully from precomputed embeddings: {index_path}")
|
||||||
|
|
||||||
|
def update_index(self, index_path: str):
|
||||||
|
"""Append new passages and vectors to an existing HNSW index."""
|
||||||
|
if not self.chunks:
|
||||||
|
raise ValueError("No new chunks provided for update.")
|
||||||
|
|
||||||
|
path = Path(index_path)
|
||||||
|
index_dir = path.parent
|
||||||
|
index_name = path.name
|
||||||
|
index_prefix = path.stem
|
||||||
|
|
||||||
|
meta_path = index_dir / f"{index_name}.meta.json"
|
||||||
|
passages_file = index_dir / f"{index_name}.passages.jsonl"
|
||||||
|
offset_file = index_dir / f"{index_name}.passages.idx"
|
||||||
|
index_file = index_dir / f"{index_prefix}.index"
|
||||||
|
|
||||||
|
if not meta_path.exists() or not passages_file.exists() or not offset_file.exists():
|
||||||
|
raise FileNotFoundError("Index metadata or passage files are missing; cannot update.")
|
||||||
|
if not index_file.exists():
|
||||||
|
raise FileNotFoundError(f"HNSW index file not found: {index_file}")
|
||||||
|
|
||||||
|
with open(meta_path, encoding="utf-8") as f:
|
||||||
|
meta = json.load(f)
|
||||||
|
backend_name = meta.get("backend_name")
|
||||||
|
if backend_name != self.backend_name:
|
||||||
|
raise ValueError(
|
||||||
|
f"Index was built with backend '{backend_name}', cannot update with '{self.backend_name}'."
|
||||||
|
)
|
||||||
|
|
||||||
|
meta_backend_kwargs = meta.get("backend_kwargs", {})
|
||||||
|
index_is_compact = meta.get("is_compact", meta_backend_kwargs.get("is_compact", True))
|
||||||
|
if index_is_compact:
|
||||||
|
raise ValueError(
|
||||||
|
"Compact HNSW indices do not support in-place updates. Rebuild required."
|
||||||
|
)
|
||||||
|
|
||||||
|
distance_metric = meta_backend_kwargs.get(
|
||||||
|
"distance_metric", self.backend_kwargs.get("distance_metric", "mips")
|
||||||
|
).lower()
|
||||||
|
needs_recompute = bool(
|
||||||
|
meta.get("is_pruned")
|
||||||
|
or meta_backend_kwargs.get("is_recompute")
|
||||||
|
or self.backend_kwargs.get("is_recompute")
|
||||||
|
)
|
||||||
|
|
||||||
|
with open(offset_file, "rb") as f:
|
||||||
|
offset_map: dict[str, int] = pickle.load(f)
|
||||||
|
existing_ids = set(offset_map.keys())
|
||||||
|
|
||||||
|
valid_chunks: list[dict[str, Any]] = []
|
||||||
|
for chunk in self.chunks:
|
||||||
|
text = chunk.get("text", "")
|
||||||
|
if not isinstance(text, str) or not text.strip():
|
||||||
|
continue
|
||||||
|
metadata = chunk.setdefault("metadata", {})
|
||||||
|
passage_id = chunk.get("id") or metadata.get("id")
|
||||||
|
if passage_id and passage_id in existing_ids:
|
||||||
|
raise ValueError(f"Passage ID '{passage_id}' already exists in the index.")
|
||||||
|
valid_chunks.append(chunk)
|
||||||
|
|
||||||
|
if not valid_chunks:
|
||||||
|
raise ValueError("No valid chunks to append.")
|
||||||
|
|
||||||
|
texts_to_embed = [chunk["text"] for chunk in valid_chunks]
|
||||||
|
embeddings = compute_embeddings(
|
||||||
|
texts_to_embed,
|
||||||
|
self.embedding_model,
|
||||||
|
self.embedding_mode,
|
||||||
|
use_server=False,
|
||||||
|
is_build=True,
|
||||||
|
provider_options=self.embedding_options,
|
||||||
|
)
|
||||||
|
|
||||||
|
embedding_dim = embeddings.shape[1]
|
||||||
|
expected_dim = meta.get("dimensions")
|
||||||
|
if expected_dim is not None and expected_dim != embedding_dim:
|
||||||
|
raise ValueError(
|
||||||
|
f"Dimension mismatch during update: existing index uses {expected_dim}, got {embedding_dim}."
|
||||||
|
)
|
||||||
|
|
||||||
|
from leann_backend_hnsw import faiss # type: ignore
|
||||||
|
|
||||||
|
embeddings = np.ascontiguousarray(embeddings, dtype=np.float32)
|
||||||
|
if distance_metric == "cosine":
|
||||||
|
norms = np.linalg.norm(embeddings, axis=1, keepdims=True)
|
||||||
|
norms[norms == 0] = 1
|
||||||
|
embeddings = embeddings / norms
|
||||||
|
|
||||||
|
index = faiss.read_index(str(index_file))
|
||||||
|
if hasattr(index, "is_recompute"):
|
||||||
|
index.is_recompute = needs_recompute
|
||||||
|
if getattr(index, "storage", None) is None:
|
||||||
|
if index.metric_type == faiss.METRIC_INNER_PRODUCT:
|
||||||
|
storage_index = faiss.IndexFlatIP(index.d)
|
||||||
|
else:
|
||||||
|
storage_index = faiss.IndexFlatL2(index.d)
|
||||||
|
index.storage = storage_index
|
||||||
|
index.own_fields = True
|
||||||
|
if index.d != embedding_dim:
|
||||||
|
raise ValueError(
|
||||||
|
f"Existing index dimension ({index.d}) does not match new embeddings ({embedding_dim})."
|
||||||
|
)
|
||||||
|
|
||||||
|
base_id = index.ntotal
|
||||||
|
for offset, chunk in enumerate(valid_chunks):
|
||||||
|
new_id = str(base_id + offset)
|
||||||
|
chunk.setdefault("metadata", {})["id"] = new_id
|
||||||
|
chunk["id"] = new_id
|
||||||
|
|
||||||
|
index.add(embeddings.shape[0], faiss.swig_ptr(embeddings))
|
||||||
|
faiss.write_index(index, str(index_file))
|
||||||
|
|
||||||
|
with open(passages_file, "a", encoding="utf-8") as f:
|
||||||
|
for chunk in valid_chunks:
|
||||||
|
offset = f.tell()
|
||||||
|
json.dump(
|
||||||
|
{
|
||||||
|
"id": chunk["id"],
|
||||||
|
"text": chunk["text"],
|
||||||
|
"metadata": chunk.get("metadata", {}),
|
||||||
|
},
|
||||||
|
f,
|
||||||
|
ensure_ascii=False,
|
||||||
|
)
|
||||||
|
f.write("\n")
|
||||||
|
offset_map[chunk["id"]] = offset
|
||||||
|
|
||||||
|
with open(offset_file, "wb") as f:
|
||||||
|
pickle.dump(offset_map, f)
|
||||||
|
|
||||||
|
meta["total_passages"] = len(offset_map)
|
||||||
|
with open(meta_path, "w", encoding="utf-8") as f:
|
||||||
|
json.dump(meta, f, indent=2)
|
||||||
|
|
||||||
|
logger.info(
|
||||||
|
"Appended %d passages to index '%s'. New total: %d",
|
||||||
|
len(valid_chunks),
|
||||||
|
index_path,
|
||||||
|
len(offset_map),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.chunks.clear()
|
||||||
|
|
||||||
|
if needs_recompute:
|
||||||
|
prune_hnsw_embeddings_inplace(str(index_file))
|
||||||
|
|
||||||
|
|
||||||
class LeannSearcher:
|
class LeannSearcher:
|
||||||
def __init__(self, index_path: str, enable_warmup: bool = False, **backend_kwargs):
|
def __init__(self, index_path: str, enable_warmup: bool = False, **backend_kwargs):
|
||||||
@@ -628,6 +784,7 @@ class LeannSearcher:
|
|||||||
self.embedding_model = self.meta_data["embedding_model"]
|
self.embedding_model = self.meta_data["embedding_model"]
|
||||||
# Support both old and new format
|
# Support both old and new format
|
||||||
self.embedding_mode = self.meta_data.get("embedding_mode", "sentence-transformers")
|
self.embedding_mode = self.meta_data.get("embedding_mode", "sentence-transformers")
|
||||||
|
self.embedding_options = self.meta_data.get("embedding_options", {})
|
||||||
# Delegate portability handling to PassageManager
|
# Delegate portability handling to PassageManager
|
||||||
self.passage_manager = PassageManager(
|
self.passage_manager = PassageManager(
|
||||||
self.meta_data.get("passage_sources", []), metadata_file_path=self.meta_path_str
|
self.meta_data.get("passage_sources", []), metadata_file_path=self.meta_path_str
|
||||||
@@ -639,6 +796,8 @@ class LeannSearcher:
|
|||||||
raise ValueError(f"Backend '{backend_name}' not found.")
|
raise ValueError(f"Backend '{backend_name}' not found.")
|
||||||
final_kwargs = {**self.meta_data.get("backend_kwargs", {}), **backend_kwargs}
|
final_kwargs = {**self.meta_data.get("backend_kwargs", {}), **backend_kwargs}
|
||||||
final_kwargs["enable_warmup"] = enable_warmup
|
final_kwargs["enable_warmup"] = enable_warmup
|
||||||
|
if self.embedding_options:
|
||||||
|
final_kwargs.setdefault("embedding_options", self.embedding_options)
|
||||||
self.backend_impl: LeannBackendSearcherInterface = backend_factory.searcher(
|
self.backend_impl: LeannBackendSearcherInterface = backend_factory.searcher(
|
||||||
index_path, **final_kwargs
|
index_path, **final_kwargs
|
||||||
)
|
)
|
||||||
|
|||||||
@@ -12,6 +12,8 @@ from typing import Any, Optional
|
|||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
from .settings import resolve_ollama_host, resolve_openai_api_key, resolve_openai_base_url
|
||||||
|
|
||||||
# Configure logging
|
# Configure logging
|
||||||
logging.basicConfig(level=logging.INFO)
|
logging.basicConfig(level=logging.INFO)
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
@@ -310,11 +312,12 @@ def search_hf_models(query: str, limit: int = 10) -> list[str]:
|
|||||||
|
|
||||||
|
|
||||||
def validate_model_and_suggest(
|
def validate_model_and_suggest(
|
||||||
model_name: str, llm_type: str, host: str = "http://localhost:11434"
|
model_name: str, llm_type: str, host: Optional[str] = None
|
||||||
) -> Optional[str]:
|
) -> Optional[str]:
|
||||||
"""Validate model name and provide suggestions if invalid"""
|
"""Validate model name and provide suggestions if invalid"""
|
||||||
if llm_type == "ollama":
|
if llm_type == "ollama":
|
||||||
available_models = check_ollama_models(host)
|
resolved_host = resolve_ollama_host(host)
|
||||||
|
available_models = check_ollama_models(resolved_host)
|
||||||
if available_models and model_name not in available_models:
|
if available_models and model_name not in available_models:
|
||||||
error_msg = f"Model '{model_name}' not found in your local Ollama installation."
|
error_msg = f"Model '{model_name}' not found in your local Ollama installation."
|
||||||
|
|
||||||
@@ -457,19 +460,19 @@ class LLMInterface(ABC):
|
|||||||
class OllamaChat(LLMInterface):
|
class OllamaChat(LLMInterface):
|
||||||
"""LLM interface for Ollama models."""
|
"""LLM interface for Ollama models."""
|
||||||
|
|
||||||
def __init__(self, model: str = "llama3:8b", host: str = "http://localhost:11434"):
|
def __init__(self, model: str = "llama3:8b", host: Optional[str] = None):
|
||||||
self.model = model
|
self.model = model
|
||||||
self.host = host
|
self.host = resolve_ollama_host(host)
|
||||||
logger.info(f"Initializing OllamaChat with model='{model}' and host='{host}'")
|
logger.info(f"Initializing OllamaChat with model='{model}' and host='{self.host}'")
|
||||||
try:
|
try:
|
||||||
import requests
|
import requests
|
||||||
|
|
||||||
# Check if the Ollama server is responsive
|
# Check if the Ollama server is responsive
|
||||||
if host:
|
if self.host:
|
||||||
requests.get(host)
|
requests.get(self.host)
|
||||||
|
|
||||||
# Pre-check model availability with helpful suggestions
|
# Pre-check model availability with helpful suggestions
|
||||||
model_error = validate_model_and_suggest(model, "ollama", host)
|
model_error = validate_model_and_suggest(model, "ollama", self.host)
|
||||||
if model_error:
|
if model_error:
|
||||||
raise ValueError(model_error)
|
raise ValueError(model_error)
|
||||||
|
|
||||||
@@ -478,9 +481,11 @@ class OllamaChat(LLMInterface):
|
|||||||
"The 'requests' library is required for Ollama. Please install it with 'pip install requests'."
|
"The 'requests' library is required for Ollama. Please install it with 'pip install requests'."
|
||||||
)
|
)
|
||||||
except requests.exceptions.ConnectionError:
|
except requests.exceptions.ConnectionError:
|
||||||
logger.error(f"Could not connect to Ollama at {host}. Please ensure Ollama is running.")
|
logger.error(
|
||||||
|
f"Could not connect to Ollama at {self.host}. Please ensure Ollama is running."
|
||||||
|
)
|
||||||
raise ConnectionError(
|
raise ConnectionError(
|
||||||
f"Could not connect to Ollama at {host}. Please ensure Ollama is running."
|
f"Could not connect to Ollama at {self.host}. Please ensure Ollama is running."
|
||||||
)
|
)
|
||||||
|
|
||||||
def ask(self, prompt: str, **kwargs) -> str:
|
def ask(self, prompt: str, **kwargs) -> str:
|
||||||
@@ -737,21 +742,31 @@ class GeminiChat(LLMInterface):
|
|||||||
class OpenAIChat(LLMInterface):
|
class OpenAIChat(LLMInterface):
|
||||||
"""LLM interface for OpenAI models."""
|
"""LLM interface for OpenAI models."""
|
||||||
|
|
||||||
def __init__(self, model: str = "gpt-4o", api_key: Optional[str] = None):
|
def __init__(
|
||||||
|
self,
|
||||||
|
model: str = "gpt-4o",
|
||||||
|
api_key: Optional[str] = None,
|
||||||
|
base_url: Optional[str] = None,
|
||||||
|
):
|
||||||
self.model = model
|
self.model = model
|
||||||
self.api_key = api_key or os.getenv("OPENAI_API_KEY")
|
self.base_url = resolve_openai_base_url(base_url)
|
||||||
|
self.api_key = resolve_openai_api_key(api_key)
|
||||||
|
|
||||||
if not self.api_key:
|
if not self.api_key:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
"OpenAI API key is required. Set OPENAI_API_KEY environment variable or pass api_key parameter."
|
"OpenAI API key is required. Set OPENAI_API_KEY environment variable or pass api_key parameter."
|
||||||
)
|
)
|
||||||
|
|
||||||
logger.info(f"Initializing OpenAI Chat with model='{model}'")
|
logger.info(
|
||||||
|
"Initializing OpenAI Chat with model='%s' and base_url='%s'",
|
||||||
|
model,
|
||||||
|
self.base_url,
|
||||||
|
)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
import openai
|
import openai
|
||||||
|
|
||||||
self.client = openai.OpenAI(api_key=self.api_key)
|
self.client = openai.OpenAI(api_key=self.api_key, base_url=self.base_url)
|
||||||
except ImportError:
|
except ImportError:
|
||||||
raise ImportError(
|
raise ImportError(
|
||||||
"The 'openai' library is required for OpenAI models. Please install it with 'pip install openai'."
|
"The 'openai' library is required for OpenAI models. Please install it with 'pip install openai'."
|
||||||
@@ -841,12 +856,16 @@ def get_llm(llm_config: Optional[dict[str, Any]] = None) -> LLMInterface:
|
|||||||
if llm_type == "ollama":
|
if llm_type == "ollama":
|
||||||
return OllamaChat(
|
return OllamaChat(
|
||||||
model=model or "llama3:8b",
|
model=model or "llama3:8b",
|
||||||
host=llm_config.get("host", "http://localhost:11434"),
|
host=llm_config.get("host"),
|
||||||
)
|
)
|
||||||
elif llm_type == "hf":
|
elif llm_type == "hf":
|
||||||
return HFChat(model_name=model or "deepseek-ai/deepseek-llm-7b-chat")
|
return HFChat(model_name=model or "deepseek-ai/deepseek-llm-7b-chat")
|
||||||
elif llm_type == "openai":
|
elif llm_type == "openai":
|
||||||
return OpenAIChat(model=model or "gpt-4o", api_key=llm_config.get("api_key"))
|
return OpenAIChat(
|
||||||
|
model=model or "gpt-4o",
|
||||||
|
api_key=llm_config.get("api_key"),
|
||||||
|
base_url=llm_config.get("base_url"),
|
||||||
|
)
|
||||||
elif llm_type == "gemini":
|
elif llm_type == "gemini":
|
||||||
return GeminiChat(model=model or "gemini-2.5-flash", api_key=llm_config.get("api_key"))
|
return GeminiChat(model=model or "gemini-2.5-flash", api_key=llm_config.get("api_key"))
|
||||||
elif llm_type == "simulated":
|
elif llm_type == "simulated":
|
||||||
|
|||||||
@@ -9,6 +9,7 @@ from tqdm import tqdm
|
|||||||
|
|
||||||
from .api import LeannBuilder, LeannChat, LeannSearcher
|
from .api import LeannBuilder, LeannChat, LeannSearcher
|
||||||
from .registry import register_project_directory
|
from .registry import register_project_directory
|
||||||
|
from .settings import resolve_ollama_host, resolve_openai_api_key, resolve_openai_base_url
|
||||||
|
|
||||||
|
|
||||||
def extract_pdf_text_with_pymupdf(file_path: str) -> str:
|
def extract_pdf_text_with_pymupdf(file_path: str) -> str:
|
||||||
@@ -123,6 +124,24 @@ Examples:
|
|||||||
choices=["sentence-transformers", "openai", "mlx", "ollama"],
|
choices=["sentence-transformers", "openai", "mlx", "ollama"],
|
||||||
help="Embedding backend mode (default: sentence-transformers)",
|
help="Embedding backend mode (default: sentence-transformers)",
|
||||||
)
|
)
|
||||||
|
build_parser.add_argument(
|
||||||
|
"--embedding-host",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="Override Ollama-compatible embedding host",
|
||||||
|
)
|
||||||
|
build_parser.add_argument(
|
||||||
|
"--embedding-api-base",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="Base URL for OpenAI-compatible embedding services",
|
||||||
|
)
|
||||||
|
build_parser.add_argument(
|
||||||
|
"--embedding-api-key",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="API key for embedding service (defaults to OPENAI_API_KEY)",
|
||||||
|
)
|
||||||
build_parser.add_argument(
|
build_parser.add_argument(
|
||||||
"--force", "-f", action="store_true", help="Force rebuild existing index"
|
"--force", "-f", action="store_true", help="Force rebuild existing index"
|
||||||
)
|
)
|
||||||
@@ -238,6 +257,11 @@ Examples:
|
|||||||
# Ask command
|
# Ask command
|
||||||
ask_parser = subparsers.add_parser("ask", help="Ask questions")
|
ask_parser = subparsers.add_parser("ask", help="Ask questions")
|
||||||
ask_parser.add_argument("index_name", help="Index name")
|
ask_parser.add_argument("index_name", help="Index name")
|
||||||
|
ask_parser.add_argument(
|
||||||
|
"query",
|
||||||
|
nargs="?",
|
||||||
|
help="Question to ask (omit for prompt or when using --interactive)",
|
||||||
|
)
|
||||||
ask_parser.add_argument(
|
ask_parser.add_argument(
|
||||||
"--llm",
|
"--llm",
|
||||||
type=str,
|
type=str,
|
||||||
@@ -248,7 +272,12 @@ Examples:
|
|||||||
ask_parser.add_argument(
|
ask_parser.add_argument(
|
||||||
"--model", type=str, default="qwen3:8b", help="Model name (default: qwen3:8b)"
|
"--model", type=str, default="qwen3:8b", help="Model name (default: qwen3:8b)"
|
||||||
)
|
)
|
||||||
ask_parser.add_argument("--host", type=str, default="http://localhost:11434")
|
ask_parser.add_argument(
|
||||||
|
"--host",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="Override Ollama-compatible host (defaults to LEANN_OLLAMA_HOST/OLLAMA_HOST)",
|
||||||
|
)
|
||||||
ask_parser.add_argument(
|
ask_parser.add_argument(
|
||||||
"--interactive", "-i", action="store_true", help="Interactive chat mode"
|
"--interactive", "-i", action="store_true", help="Interactive chat mode"
|
||||||
)
|
)
|
||||||
@@ -277,6 +306,18 @@ Examples:
|
|||||||
default=None,
|
default=None,
|
||||||
help="Thinking budget for reasoning models (low/medium/high). Supported by GPT-Oss:20b and other reasoning models.",
|
help="Thinking budget for reasoning models (low/medium/high). Supported by GPT-Oss:20b and other reasoning models.",
|
||||||
)
|
)
|
||||||
|
ask_parser.add_argument(
|
||||||
|
"--api-base",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="Base URL for OpenAI-compatible APIs (e.g., http://localhost:10000/v1)",
|
||||||
|
)
|
||||||
|
ask_parser.add_argument(
|
||||||
|
"--api-key",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="API key for OpenAI-compatible APIs (defaults to OPENAI_API_KEY)",
|
||||||
|
)
|
||||||
|
|
||||||
# List command
|
# List command
|
||||||
subparsers.add_parser("list", help="List all indexes")
|
subparsers.add_parser("list", help="List all indexes")
|
||||||
@@ -1325,10 +1366,20 @@ Examples:
|
|||||||
|
|
||||||
print(f"Building index '{index_name}' with {args.backend} backend...")
|
print(f"Building index '{index_name}' with {args.backend} backend...")
|
||||||
|
|
||||||
|
embedding_options: dict[str, Any] = {}
|
||||||
|
if args.embedding_mode == "ollama":
|
||||||
|
embedding_options["host"] = resolve_ollama_host(args.embedding_host)
|
||||||
|
elif args.embedding_mode == "openai":
|
||||||
|
embedding_options["base_url"] = resolve_openai_base_url(args.embedding_api_base)
|
||||||
|
resolved_embedding_key = resolve_openai_api_key(args.embedding_api_key)
|
||||||
|
if resolved_embedding_key:
|
||||||
|
embedding_options["api_key"] = resolved_embedding_key
|
||||||
|
|
||||||
builder = LeannBuilder(
|
builder = LeannBuilder(
|
||||||
backend_name=args.backend,
|
backend_name=args.backend,
|
||||||
embedding_model=args.embedding_model,
|
embedding_model=args.embedding_model,
|
||||||
embedding_mode=args.embedding_mode,
|
embedding_mode=args.embedding_mode,
|
||||||
|
embedding_options=embedding_options or None,
|
||||||
graph_degree=args.graph_degree,
|
graph_degree=args.graph_degree,
|
||||||
complexity=args.complexity,
|
complexity=args.complexity,
|
||||||
is_compact=args.compact,
|
is_compact=args.compact,
|
||||||
@@ -1476,11 +1527,38 @@ Examples:
|
|||||||
|
|
||||||
llm_config = {"type": args.llm, "model": args.model}
|
llm_config = {"type": args.llm, "model": args.model}
|
||||||
if args.llm == "ollama":
|
if args.llm == "ollama":
|
||||||
llm_config["host"] = args.host
|
llm_config["host"] = resolve_ollama_host(args.host)
|
||||||
|
elif args.llm == "openai":
|
||||||
|
llm_config["base_url"] = resolve_openai_base_url(args.api_base)
|
||||||
|
resolved_api_key = resolve_openai_api_key(args.api_key)
|
||||||
|
if resolved_api_key:
|
||||||
|
llm_config["api_key"] = resolved_api_key
|
||||||
|
|
||||||
chat = LeannChat(index_path=index_path, llm_config=llm_config)
|
chat = LeannChat(index_path=index_path, llm_config=llm_config)
|
||||||
|
|
||||||
|
llm_kwargs: dict[str, Any] = {}
|
||||||
|
if args.thinking_budget:
|
||||||
|
llm_kwargs["thinking_budget"] = args.thinking_budget
|
||||||
|
|
||||||
|
def _ask_once(prompt: str) -> None:
|
||||||
|
response = chat.ask(
|
||||||
|
prompt,
|
||||||
|
top_k=args.top_k,
|
||||||
|
complexity=args.complexity,
|
||||||
|
beam_width=args.beam_width,
|
||||||
|
prune_ratio=args.prune_ratio,
|
||||||
|
recompute_embeddings=args.recompute_embeddings,
|
||||||
|
pruning_strategy=args.pruning_strategy,
|
||||||
|
llm_kwargs=llm_kwargs,
|
||||||
|
)
|
||||||
|
print(f"LEANN: {response}")
|
||||||
|
|
||||||
|
initial_query = (args.query or "").strip()
|
||||||
|
|
||||||
if args.interactive:
|
if args.interactive:
|
||||||
|
if initial_query:
|
||||||
|
_ask_once(initial_query)
|
||||||
|
|
||||||
print("LEANN Assistant ready! Type 'quit' to exit")
|
print("LEANN Assistant ready! Type 'quit' to exit")
|
||||||
print("=" * 40)
|
print("=" * 40)
|
||||||
|
|
||||||
@@ -1493,41 +1571,14 @@ Examples:
|
|||||||
if not user_input:
|
if not user_input:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# Prepare LLM kwargs with thinking budget if specified
|
_ask_once(user_input)
|
||||||
llm_kwargs = {}
|
|
||||||
if args.thinking_budget:
|
|
||||||
llm_kwargs["thinking_budget"] = args.thinking_budget
|
|
||||||
|
|
||||||
response = chat.ask(
|
|
||||||
user_input,
|
|
||||||
top_k=args.top_k,
|
|
||||||
complexity=args.complexity,
|
|
||||||
beam_width=args.beam_width,
|
|
||||||
prune_ratio=args.prune_ratio,
|
|
||||||
recompute_embeddings=args.recompute_embeddings,
|
|
||||||
pruning_strategy=args.pruning_strategy,
|
|
||||||
llm_kwargs=llm_kwargs,
|
|
||||||
)
|
|
||||||
print(f"LEANN: {response}")
|
|
||||||
else:
|
else:
|
||||||
query = input("Enter your question: ").strip()
|
query = initial_query or input("Enter your question: ").strip()
|
||||||
if query:
|
if not query:
|
||||||
# Prepare LLM kwargs with thinking budget if specified
|
print("No question provided. Exiting.")
|
||||||
llm_kwargs = {}
|
return
|
||||||
if args.thinking_budget:
|
|
||||||
llm_kwargs["thinking_budget"] = args.thinking_budget
|
|
||||||
|
|
||||||
response = chat.ask(
|
_ask_once(query)
|
||||||
query,
|
|
||||||
top_k=args.top_k,
|
|
||||||
complexity=args.complexity,
|
|
||||||
beam_width=args.beam_width,
|
|
||||||
prune_ratio=args.prune_ratio,
|
|
||||||
recompute_embeddings=args.recompute_embeddings,
|
|
||||||
pruning_strategy=args.pruning_strategy,
|
|
||||||
llm_kwargs=llm_kwargs,
|
|
||||||
)
|
|
||||||
print(f"LEANN: {response}")
|
|
||||||
|
|
||||||
async def run(self, args=None):
|
async def run(self, args=None):
|
||||||
parser = self.create_parser()
|
parser = self.create_parser()
|
||||||
|
|||||||
@@ -7,11 +7,13 @@ Preserves all optimization parameters to ensure performance
|
|||||||
import logging
|
import logging
|
||||||
import os
|
import os
|
||||||
import time
|
import time
|
||||||
from typing import Any
|
from typing import Any, Optional
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
from .settings import resolve_ollama_host, resolve_openai_api_key, resolve_openai_base_url
|
||||||
|
|
||||||
# Set up logger with proper level
|
# Set up logger with proper level
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
LOG_LEVEL = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
|
LOG_LEVEL = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
|
||||||
@@ -31,6 +33,7 @@ def compute_embeddings(
|
|||||||
adaptive_optimization: bool = True,
|
adaptive_optimization: bool = True,
|
||||||
manual_tokenize: bool = False,
|
manual_tokenize: bool = False,
|
||||||
max_length: int = 512,
|
max_length: int = 512,
|
||||||
|
provider_options: Optional[dict[str, Any]] = None,
|
||||||
) -> np.ndarray:
|
) -> np.ndarray:
|
||||||
"""
|
"""
|
||||||
Unified embedding computation entry point
|
Unified embedding computation entry point
|
||||||
@@ -46,6 +49,8 @@ def compute_embeddings(
|
|||||||
Returns:
|
Returns:
|
||||||
Normalized embeddings array, shape: (len(texts), embedding_dim)
|
Normalized embeddings array, shape: (len(texts), embedding_dim)
|
||||||
"""
|
"""
|
||||||
|
provider_options = provider_options or {}
|
||||||
|
|
||||||
if mode == "sentence-transformers":
|
if mode == "sentence-transformers":
|
||||||
return compute_embeddings_sentence_transformers(
|
return compute_embeddings_sentence_transformers(
|
||||||
texts,
|
texts,
|
||||||
@@ -57,11 +62,21 @@ def compute_embeddings(
|
|||||||
max_length=max_length,
|
max_length=max_length,
|
||||||
)
|
)
|
||||||
elif mode == "openai":
|
elif mode == "openai":
|
||||||
return compute_embeddings_openai(texts, model_name)
|
return compute_embeddings_openai(
|
||||||
|
texts,
|
||||||
|
model_name,
|
||||||
|
base_url=provider_options.get("base_url"),
|
||||||
|
api_key=provider_options.get("api_key"),
|
||||||
|
)
|
||||||
elif mode == "mlx":
|
elif mode == "mlx":
|
||||||
return compute_embeddings_mlx(texts, model_name)
|
return compute_embeddings_mlx(texts, model_name)
|
||||||
elif mode == "ollama":
|
elif mode == "ollama":
|
||||||
return compute_embeddings_ollama(texts, model_name, is_build=is_build)
|
return compute_embeddings_ollama(
|
||||||
|
texts,
|
||||||
|
model_name,
|
||||||
|
is_build=is_build,
|
||||||
|
host=provider_options.get("host"),
|
||||||
|
)
|
||||||
elif mode == "gemini":
|
elif mode == "gemini":
|
||||||
return compute_embeddings_gemini(texts, model_name, is_build=is_build)
|
return compute_embeddings_gemini(texts, model_name, is_build=is_build)
|
||||||
else:
|
else:
|
||||||
@@ -353,12 +368,15 @@ def compute_embeddings_sentence_transformers(
|
|||||||
return embeddings
|
return embeddings
|
||||||
|
|
||||||
|
|
||||||
def compute_embeddings_openai(texts: list[str], model_name: str) -> np.ndarray:
|
def compute_embeddings_openai(
|
||||||
|
texts: list[str],
|
||||||
|
model_name: str,
|
||||||
|
base_url: Optional[str] = None,
|
||||||
|
api_key: Optional[str] = None,
|
||||||
|
) -> np.ndarray:
|
||||||
# TODO: @yichuan-w add progress bar only in build mode
|
# TODO: @yichuan-w add progress bar only in build mode
|
||||||
"""Compute embeddings using OpenAI API"""
|
"""Compute embeddings using OpenAI API"""
|
||||||
try:
|
try:
|
||||||
import os
|
|
||||||
|
|
||||||
import openai
|
import openai
|
||||||
except ImportError as e:
|
except ImportError as e:
|
||||||
raise ImportError(f"OpenAI package not installed: {e}")
|
raise ImportError(f"OpenAI package not installed: {e}")
|
||||||
@@ -373,16 +391,18 @@ def compute_embeddings_openai(texts: list[str], model_name: str) -> np.ndarray:
|
|||||||
f"Found {invalid_count} empty/invalid text(s) in input. Upstream should filter before calling OpenAI."
|
f"Found {invalid_count} empty/invalid text(s) in input. Upstream should filter before calling OpenAI."
|
||||||
)
|
)
|
||||||
|
|
||||||
api_key = os.getenv("OPENAI_API_KEY")
|
resolved_base_url = resolve_openai_base_url(base_url)
|
||||||
if not api_key:
|
resolved_api_key = resolve_openai_api_key(api_key)
|
||||||
|
|
||||||
|
if not resolved_api_key:
|
||||||
raise RuntimeError("OPENAI_API_KEY environment variable not set")
|
raise RuntimeError("OPENAI_API_KEY environment variable not set")
|
||||||
|
|
||||||
# Cache OpenAI client
|
# Cache OpenAI client
|
||||||
cache_key = "openai_client"
|
cache_key = f"openai_client::{resolved_base_url}"
|
||||||
if cache_key in _model_cache:
|
if cache_key in _model_cache:
|
||||||
client = _model_cache[cache_key]
|
client = _model_cache[cache_key]
|
||||||
else:
|
else:
|
||||||
client = openai.OpenAI(api_key=api_key)
|
client = openai.OpenAI(api_key=resolved_api_key, base_url=resolved_base_url)
|
||||||
_model_cache[cache_key] = client
|
_model_cache[cache_key] = client
|
||||||
logger.info("OpenAI client cached")
|
logger.info("OpenAI client cached")
|
||||||
|
|
||||||
@@ -507,7 +527,10 @@ def compute_embeddings_mlx(chunks: list[str], model_name: str, batch_size: int =
|
|||||||
|
|
||||||
|
|
||||||
def compute_embeddings_ollama(
|
def compute_embeddings_ollama(
|
||||||
texts: list[str], model_name: str, is_build: bool = False, host: str = "http://localhost:11434"
|
texts: list[str],
|
||||||
|
model_name: str,
|
||||||
|
is_build: bool = False,
|
||||||
|
host: Optional[str] = None,
|
||||||
) -> np.ndarray:
|
) -> np.ndarray:
|
||||||
"""
|
"""
|
||||||
Compute embeddings using Ollama API with simplified batch processing.
|
Compute embeddings using Ollama API with simplified batch processing.
|
||||||
@@ -518,7 +541,7 @@ def compute_embeddings_ollama(
|
|||||||
texts: List of texts to compute embeddings for
|
texts: List of texts to compute embeddings for
|
||||||
model_name: Ollama model name (e.g., "nomic-embed-text", "mxbai-embed-large")
|
model_name: Ollama model name (e.g., "nomic-embed-text", "mxbai-embed-large")
|
||||||
is_build: Whether this is a build operation (shows progress bar)
|
is_build: Whether this is a build operation (shows progress bar)
|
||||||
host: Ollama host URL (default: http://localhost:11434)
|
host: Ollama host URL (defaults to environment or http://localhost:11434)
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Normalized embeddings array, shape: (len(texts), embedding_dim)
|
Normalized embeddings array, shape: (len(texts), embedding_dim)
|
||||||
@@ -533,17 +556,19 @@ def compute_embeddings_ollama(
|
|||||||
if not texts:
|
if not texts:
|
||||||
raise ValueError("Cannot compute embeddings for empty text list")
|
raise ValueError("Cannot compute embeddings for empty text list")
|
||||||
|
|
||||||
|
resolved_host = resolve_ollama_host(host)
|
||||||
|
|
||||||
logger.info(
|
logger.info(
|
||||||
f"Computing embeddings for {len(texts)} texts using Ollama API, model: '{model_name}'"
|
f"Computing embeddings for {len(texts)} texts using Ollama API, model: '{model_name}', host: '{resolved_host}'"
|
||||||
)
|
)
|
||||||
|
|
||||||
# Check if Ollama is running
|
# Check if Ollama is running
|
||||||
try:
|
try:
|
||||||
response = requests.get(f"{host}/api/version", timeout=5)
|
response = requests.get(f"{resolved_host}/api/version", timeout=5)
|
||||||
response.raise_for_status()
|
response.raise_for_status()
|
||||||
except requests.exceptions.ConnectionError:
|
except requests.exceptions.ConnectionError:
|
||||||
error_msg = (
|
error_msg = (
|
||||||
f"❌ Could not connect to Ollama at {host}.\n\n"
|
f"❌ Could not connect to Ollama at {resolved_host}.\n\n"
|
||||||
"Please ensure Ollama is running:\n"
|
"Please ensure Ollama is running:\n"
|
||||||
" • macOS/Linux: ollama serve\n"
|
" • macOS/Linux: ollama serve\n"
|
||||||
" • Windows: Make sure Ollama is running in the system tray\n\n"
|
" • Windows: Make sure Ollama is running in the system tray\n\n"
|
||||||
@@ -555,7 +580,7 @@ def compute_embeddings_ollama(
|
|||||||
|
|
||||||
# Check if model exists and provide helpful suggestions
|
# Check if model exists and provide helpful suggestions
|
||||||
try:
|
try:
|
||||||
response = requests.get(f"{host}/api/tags", timeout=5)
|
response = requests.get(f"{resolved_host}/api/tags", timeout=5)
|
||||||
response.raise_for_status()
|
response.raise_for_status()
|
||||||
models = response.json()
|
models = response.json()
|
||||||
model_names = [model["name"] for model in models.get("models", [])]
|
model_names = [model["name"] for model in models.get("models", [])]
|
||||||
@@ -618,7 +643,9 @@ def compute_embeddings_ollama(
|
|||||||
# Verify the model supports embeddings by testing it
|
# Verify the model supports embeddings by testing it
|
||||||
try:
|
try:
|
||||||
test_response = requests.post(
|
test_response = requests.post(
|
||||||
f"{host}/api/embeddings", json={"model": model_name, "prompt": "test"}, timeout=10
|
f"{resolved_host}/api/embeddings",
|
||||||
|
json={"model": model_name, "prompt": "test"},
|
||||||
|
timeout=10,
|
||||||
)
|
)
|
||||||
if test_response.status_code != 200:
|
if test_response.status_code != 200:
|
||||||
error_msg = (
|
error_msg = (
|
||||||
@@ -665,7 +692,7 @@ def compute_embeddings_ollama(
|
|||||||
while retry_count < max_retries:
|
while retry_count < max_retries:
|
||||||
try:
|
try:
|
||||||
response = requests.post(
|
response = requests.post(
|
||||||
f"{host}/api/embeddings",
|
f"{resolved_host}/api/embeddings",
|
||||||
json={"model": model_name, "prompt": truncated_text},
|
json={"model": model_name, "prompt": truncated_text},
|
||||||
timeout=30,
|
timeout=30,
|
||||||
)
|
)
|
||||||
|
|||||||
@@ -8,6 +8,8 @@ import time
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
|
from .settings import encode_provider_options
|
||||||
|
|
||||||
# Lightweight, self-contained server manager with no cross-process inspection
|
# Lightweight, self-contained server manager with no cross-process inspection
|
||||||
|
|
||||||
# Set up logging based on environment variable
|
# Set up logging based on environment variable
|
||||||
@@ -82,16 +84,40 @@ class EmbeddingServerManager:
|
|||||||
) -> tuple[bool, int]:
|
) -> tuple[bool, int]:
|
||||||
"""Start the embedding server."""
|
"""Start the embedding server."""
|
||||||
# passages_file may be present in kwargs for server CLI, but we don't need it here
|
# passages_file may be present in kwargs for server CLI, but we don't need it here
|
||||||
|
provider_options = kwargs.pop("provider_options", None)
|
||||||
|
|
||||||
|
config_signature = {
|
||||||
|
"model_name": model_name,
|
||||||
|
"passages_file": kwargs.get("passages_file", ""),
|
||||||
|
"embedding_mode": embedding_mode,
|
||||||
|
"provider_options": provider_options or {},
|
||||||
|
}
|
||||||
|
|
||||||
# If this manager already has a live server, just reuse it
|
# If this manager already has a live server, just reuse it
|
||||||
if self.server_process and self.server_process.poll() is None and self.server_port:
|
if (
|
||||||
|
self.server_process
|
||||||
|
and self.server_process.poll() is None
|
||||||
|
and self.server_port
|
||||||
|
and self._server_config == config_signature
|
||||||
|
):
|
||||||
logger.info("Reusing in-process server")
|
logger.info("Reusing in-process server")
|
||||||
return True, self.server_port
|
return True, self.server_port
|
||||||
|
|
||||||
|
# Configuration changed, stop existing server before starting a new one
|
||||||
|
if self.server_process and self.server_process.poll() is None:
|
||||||
|
logger.info("Existing server configuration differs; restarting embedding server")
|
||||||
|
self.stop_server()
|
||||||
|
|
||||||
# For Colab environment, use a different strategy
|
# For Colab environment, use a different strategy
|
||||||
if _is_colab_environment():
|
if _is_colab_environment():
|
||||||
logger.info("Detected Colab environment, using alternative startup strategy")
|
logger.info("Detected Colab environment, using alternative startup strategy")
|
||||||
return self._start_server_colab(port, model_name, embedding_mode, **kwargs)
|
return self._start_server_colab(
|
||||||
|
port,
|
||||||
|
model_name,
|
||||||
|
embedding_mode,
|
||||||
|
provider_options=provider_options,
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
|
||||||
# Always pick a fresh available port
|
# Always pick a fresh available port
|
||||||
try:
|
try:
|
||||||
@@ -101,13 +127,21 @@ class EmbeddingServerManager:
|
|||||||
return False, port
|
return False, port
|
||||||
|
|
||||||
# Start a new server
|
# Start a new server
|
||||||
return self._start_new_server(actual_port, model_name, embedding_mode, **kwargs)
|
return self._start_new_server(
|
||||||
|
actual_port,
|
||||||
|
model_name,
|
||||||
|
embedding_mode,
|
||||||
|
provider_options=provider_options,
|
||||||
|
config_signature=config_signature,
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
|
||||||
def _start_server_colab(
|
def _start_server_colab(
|
||||||
self,
|
self,
|
||||||
port: int,
|
port: int,
|
||||||
model_name: str,
|
model_name: str,
|
||||||
embedding_mode: str = "sentence-transformers",
|
embedding_mode: str = "sentence-transformers",
|
||||||
|
provider_options: Optional[dict] = None,
|
||||||
**kwargs,
|
**kwargs,
|
||||||
) -> tuple[bool, int]:
|
) -> tuple[bool, int]:
|
||||||
"""Start server with Colab-specific configuration."""
|
"""Start server with Colab-specific configuration."""
|
||||||
@@ -125,8 +159,20 @@ class EmbeddingServerManager:
|
|||||||
|
|
||||||
try:
|
try:
|
||||||
# In Colab, we'll use a more direct approach
|
# In Colab, we'll use a more direct approach
|
||||||
self._launch_server_process_colab(command, actual_port)
|
self._launch_server_process_colab(
|
||||||
return self._wait_for_server_ready_colab(actual_port)
|
command,
|
||||||
|
actual_port,
|
||||||
|
provider_options=provider_options,
|
||||||
|
)
|
||||||
|
started, ready_port = self._wait_for_server_ready_colab(actual_port)
|
||||||
|
if started:
|
||||||
|
self._server_config = {
|
||||||
|
"model_name": model_name,
|
||||||
|
"passages_file": kwargs.get("passages_file", ""),
|
||||||
|
"embedding_mode": embedding_mode,
|
||||||
|
"provider_options": provider_options or {},
|
||||||
|
}
|
||||||
|
return started, ready_port
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Failed to start embedding server in Colab: {e}")
|
logger.error(f"Failed to start embedding server in Colab: {e}")
|
||||||
return False, actual_port
|
return False, actual_port
|
||||||
@@ -134,7 +180,13 @@ class EmbeddingServerManager:
|
|||||||
# Note: No compatibility check needed; manager is per-searcher and configs are stable per instance
|
# Note: No compatibility check needed; manager is per-searcher and configs are stable per instance
|
||||||
|
|
||||||
def _start_new_server(
|
def _start_new_server(
|
||||||
self, port: int, model_name: str, embedding_mode: str, **kwargs
|
self,
|
||||||
|
port: int,
|
||||||
|
model_name: str,
|
||||||
|
embedding_mode: str,
|
||||||
|
provider_options: Optional[dict] = None,
|
||||||
|
config_signature: Optional[dict] = None,
|
||||||
|
**kwargs,
|
||||||
) -> tuple[bool, int]:
|
) -> tuple[bool, int]:
|
||||||
"""Start a new embedding server on the given port."""
|
"""Start a new embedding server on the given port."""
|
||||||
logger.info(f"Starting embedding server on port {port}...")
|
logger.info(f"Starting embedding server on port {port}...")
|
||||||
@@ -142,8 +194,20 @@ class EmbeddingServerManager:
|
|||||||
command = self._build_server_command(port, model_name, embedding_mode, **kwargs)
|
command = self._build_server_command(port, model_name, embedding_mode, **kwargs)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
self._launch_server_process(command, port)
|
self._launch_server_process(
|
||||||
return self._wait_for_server_ready(port)
|
command,
|
||||||
|
port,
|
||||||
|
provider_options=provider_options,
|
||||||
|
)
|
||||||
|
started, ready_port = self._wait_for_server_ready(port)
|
||||||
|
if started:
|
||||||
|
self._server_config = config_signature or {
|
||||||
|
"model_name": model_name,
|
||||||
|
"passages_file": kwargs.get("passages_file", ""),
|
||||||
|
"embedding_mode": embedding_mode,
|
||||||
|
"provider_options": provider_options or {},
|
||||||
|
}
|
||||||
|
return started, ready_port
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Failed to start embedding server: {e}")
|
logger.error(f"Failed to start embedding server: {e}")
|
||||||
return False, port
|
return False, port
|
||||||
@@ -173,7 +237,12 @@ class EmbeddingServerManager:
|
|||||||
|
|
||||||
return command
|
return command
|
||||||
|
|
||||||
def _launch_server_process(self, command: list, port: int) -> None:
|
def _launch_server_process(
|
||||||
|
self,
|
||||||
|
command: list,
|
||||||
|
port: int,
|
||||||
|
provider_options: Optional[dict] = None,
|
||||||
|
) -> None:
|
||||||
"""Launch the server process."""
|
"""Launch the server process."""
|
||||||
project_root = Path(__file__).parent.parent.parent.parent.parent
|
project_root = Path(__file__).parent.parent.parent.parent.parent
|
||||||
logger.info(f"Command: {' '.join(command)}")
|
logger.info(f"Command: {' '.join(command)}")
|
||||||
@@ -193,14 +262,20 @@ class EmbeddingServerManager:
|
|||||||
|
|
||||||
# Start embedding server subprocess
|
# Start embedding server subprocess
|
||||||
logger.info(f"Starting server process with command: {' '.join(command)}")
|
logger.info(f"Starting server process with command: {' '.join(command)}")
|
||||||
|
env = os.environ.copy()
|
||||||
|
encoded_options = encode_provider_options(provider_options)
|
||||||
|
if encoded_options:
|
||||||
|
env["LEANN_EMBEDDING_OPTIONS"] = encoded_options
|
||||||
|
|
||||||
self.server_process = subprocess.Popen(
|
self.server_process = subprocess.Popen(
|
||||||
command,
|
command,
|
||||||
cwd=project_root,
|
cwd=project_root,
|
||||||
stdout=stdout_target,
|
stdout=stdout_target,
|
||||||
stderr=stderr_target,
|
stderr=stderr_target,
|
||||||
|
env=env,
|
||||||
)
|
)
|
||||||
self.server_port = port
|
self.server_port = port
|
||||||
# Record config for in-process reuse
|
# Record config for in-process reuse (best effort; refined later when ready)
|
||||||
try:
|
try:
|
||||||
self._server_config = {
|
self._server_config = {
|
||||||
"model_name": command[command.index("--model-name") + 1]
|
"model_name": command[command.index("--model-name") + 1]
|
||||||
@@ -212,12 +287,14 @@ class EmbeddingServerManager:
|
|||||||
"embedding_mode": command[command.index("--embedding-mode") + 1]
|
"embedding_mode": command[command.index("--embedding-mode") + 1]
|
||||||
if "--embedding-mode" in command
|
if "--embedding-mode" in command
|
||||||
else "sentence-transformers",
|
else "sentence-transformers",
|
||||||
|
"provider_options": provider_options or {},
|
||||||
}
|
}
|
||||||
except Exception:
|
except Exception:
|
||||||
self._server_config = {
|
self._server_config = {
|
||||||
"model_name": "",
|
"model_name": "",
|
||||||
"passages_file": "",
|
"passages_file": "",
|
||||||
"embedding_mode": "sentence-transformers",
|
"embedding_mode": "sentence-transformers",
|
||||||
|
"provider_options": provider_options or {},
|
||||||
}
|
}
|
||||||
logger.info(f"Server process started with PID: {self.server_process.pid}")
|
logger.info(f"Server process started with PID: {self.server_process.pid}")
|
||||||
|
|
||||||
@@ -322,16 +399,27 @@ class EmbeddingServerManager:
|
|||||||
# Removed: cross-process adoption no longer supported
|
# Removed: cross-process adoption no longer supported
|
||||||
return
|
return
|
||||||
|
|
||||||
def _launch_server_process_colab(self, command: list, port: int) -> None:
|
def _launch_server_process_colab(
|
||||||
|
self,
|
||||||
|
command: list,
|
||||||
|
port: int,
|
||||||
|
provider_options: Optional[dict] = None,
|
||||||
|
) -> None:
|
||||||
"""Launch the server process with Colab-specific settings."""
|
"""Launch the server process with Colab-specific settings."""
|
||||||
logger.info(f"Colab Command: {' '.join(command)}")
|
logger.info(f"Colab Command: {' '.join(command)}")
|
||||||
|
|
||||||
# In Colab, we need to be more careful about process management
|
# In Colab, we need to be more careful about process management
|
||||||
|
env = os.environ.copy()
|
||||||
|
encoded_options = encode_provider_options(provider_options)
|
||||||
|
if encoded_options:
|
||||||
|
env["LEANN_EMBEDDING_OPTIONS"] = encoded_options
|
||||||
|
|
||||||
self.server_process = subprocess.Popen(
|
self.server_process = subprocess.Popen(
|
||||||
command,
|
command,
|
||||||
stdout=subprocess.PIPE,
|
stdout=subprocess.PIPE,
|
||||||
stderr=subprocess.PIPE,
|
stderr=subprocess.PIPE,
|
||||||
text=True,
|
text=True,
|
||||||
|
env=env,
|
||||||
)
|
)
|
||||||
self.server_port = port
|
self.server_port = port
|
||||||
logger.info(f"Colab server process started with PID: {self.server_process.pid}")
|
logger.info(f"Colab server process started with PID: {self.server_process.pid}")
|
||||||
@@ -345,6 +433,7 @@ class EmbeddingServerManager:
|
|||||||
"model_name": "",
|
"model_name": "",
|
||||||
"passages_file": "",
|
"passages_file": "",
|
||||||
"embedding_mode": "sentence-transformers",
|
"embedding_mode": "sentence-transformers",
|
||||||
|
"provider_options": provider_options or {},
|
||||||
}
|
}
|
||||||
|
|
||||||
def _wait_for_server_ready_colab(self, port: int) -> tuple[bool, int]:
|
def _wait_for_server_ready_colab(self, port: int) -> tuple[bool, int]:
|
||||||
|
|||||||
@@ -41,6 +41,7 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
|
|||||||
print("WARNING: embedding_model not found in meta.json. Recompute will fail.")
|
print("WARNING: embedding_model not found in meta.json. Recompute will fail.")
|
||||||
|
|
||||||
self.embedding_mode = self.meta.get("embedding_mode", "sentence-transformers")
|
self.embedding_mode = self.meta.get("embedding_mode", "sentence-transformers")
|
||||||
|
self.embedding_options = self.meta.get("embedding_options", {})
|
||||||
|
|
||||||
self.embedding_server_manager = EmbeddingServerManager(
|
self.embedding_server_manager = EmbeddingServerManager(
|
||||||
backend_module_name=backend_module_name,
|
backend_module_name=backend_module_name,
|
||||||
@@ -77,6 +78,7 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
|
|||||||
passages_file=passages_source_file,
|
passages_file=passages_source_file,
|
||||||
distance_metric=distance_metric,
|
distance_metric=distance_metric,
|
||||||
enable_warmup=kwargs.get("enable_warmup", False),
|
enable_warmup=kwargs.get("enable_warmup", False),
|
||||||
|
provider_options=self.embedding_options,
|
||||||
)
|
)
|
||||||
if not server_started:
|
if not server_started:
|
||||||
raise RuntimeError(f"Failed to start embedding server on port {actual_port}")
|
raise RuntimeError(f"Failed to start embedding server on port {actual_port}")
|
||||||
@@ -125,7 +127,12 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
|
|||||||
from .embedding_compute import compute_embeddings
|
from .embedding_compute import compute_embeddings
|
||||||
|
|
||||||
embedding_mode = self.meta.get("embedding_mode", "sentence-transformers")
|
embedding_mode = self.meta.get("embedding_mode", "sentence-transformers")
|
||||||
return compute_embeddings([query], self.embedding_model, embedding_mode)
|
return compute_embeddings(
|
||||||
|
[query],
|
||||||
|
self.embedding_model,
|
||||||
|
embedding_mode,
|
||||||
|
provider_options=self.embedding_options,
|
||||||
|
)
|
||||||
|
|
||||||
def _compute_embedding_via_server(self, chunks: list, zmq_port: int) -> np.ndarray:
|
def _compute_embedding_via_server(self, chunks: list, zmq_port: int) -> np.ndarray:
|
||||||
"""Compute embeddings using the ZMQ embedding server."""
|
"""Compute embeddings using the ZMQ embedding server."""
|
||||||
|
|||||||
74
packages/leann-core/src/leann/settings.py
Normal file
74
packages/leann-core/src/leann/settings.py
Normal file
@@ -0,0 +1,74 @@
|
|||||||
|
"""Runtime configuration helpers for LEANN."""
|
||||||
|
|
||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
|
# Default fallbacks to preserve current behaviour while keeping them in one place.
|
||||||
|
_DEFAULT_OLLAMA_HOST = "http://localhost:11434"
|
||||||
|
_DEFAULT_OPENAI_BASE_URL = "https://api.openai.com/v1"
|
||||||
|
|
||||||
|
|
||||||
|
def _clean_url(value: str) -> str:
|
||||||
|
"""Normalize URL strings by stripping trailing slashes."""
|
||||||
|
|
||||||
|
return value.rstrip("/") if value else value
|
||||||
|
|
||||||
|
|
||||||
|
def resolve_ollama_host(explicit: str | None = None) -> str:
|
||||||
|
"""Resolve the Ollama-compatible endpoint to use."""
|
||||||
|
|
||||||
|
candidates = (
|
||||||
|
explicit,
|
||||||
|
os.getenv("LEANN_LOCAL_LLM_HOST"),
|
||||||
|
os.getenv("LEANN_OLLAMA_HOST"),
|
||||||
|
os.getenv("OLLAMA_HOST"),
|
||||||
|
os.getenv("LOCAL_LLM_ENDPOINT"),
|
||||||
|
)
|
||||||
|
|
||||||
|
for candidate in candidates:
|
||||||
|
if candidate:
|
||||||
|
return _clean_url(candidate)
|
||||||
|
|
||||||
|
return _clean_url(_DEFAULT_OLLAMA_HOST)
|
||||||
|
|
||||||
|
|
||||||
|
def resolve_openai_base_url(explicit: str | None = None) -> str:
|
||||||
|
"""Resolve the base URL for OpenAI-compatible services."""
|
||||||
|
|
||||||
|
candidates = (
|
||||||
|
explicit,
|
||||||
|
os.getenv("LEANN_OPENAI_BASE_URL"),
|
||||||
|
os.getenv("OPENAI_BASE_URL"),
|
||||||
|
os.getenv("LOCAL_OPENAI_BASE_URL"),
|
||||||
|
)
|
||||||
|
|
||||||
|
for candidate in candidates:
|
||||||
|
if candidate:
|
||||||
|
return _clean_url(candidate)
|
||||||
|
|
||||||
|
return _clean_url(_DEFAULT_OPENAI_BASE_URL)
|
||||||
|
|
||||||
|
|
||||||
|
def resolve_openai_api_key(explicit: str | None = None) -> str | None:
|
||||||
|
"""Resolve the API key for OpenAI-compatible services."""
|
||||||
|
|
||||||
|
if explicit:
|
||||||
|
return explicit
|
||||||
|
|
||||||
|
return os.getenv("OPENAI_API_KEY")
|
||||||
|
|
||||||
|
|
||||||
|
def encode_provider_options(options: dict[str, Any] | None) -> str | None:
|
||||||
|
"""Serialize provider options for child processes."""
|
||||||
|
|
||||||
|
if not options:
|
||||||
|
return None
|
||||||
|
|
||||||
|
try:
|
||||||
|
return json.dumps(options)
|
||||||
|
except (TypeError, ValueError):
|
||||||
|
# Fall back to empty payload if serialization fails
|
||||||
|
return None
|
||||||
14
tests/test_cli_ask.py
Normal file
14
tests/test_cli_ask.py
Normal file
@@ -0,0 +1,14 @@
|
|||||||
|
from leann.cli import LeannCLI
|
||||||
|
|
||||||
|
|
||||||
|
def test_cli_ask_accepts_positional_query(tmp_path, monkeypatch):
|
||||||
|
monkeypatch.chdir(tmp_path)
|
||||||
|
|
||||||
|
cli = LeannCLI()
|
||||||
|
parser = cli.create_parser()
|
||||||
|
|
||||||
|
args = parser.parse_args(["ask", "my-docs", "Where are prompts configured?"])
|
||||||
|
|
||||||
|
assert args.command == "ask"
|
||||||
|
assert args.index_name == "my-docs"
|
||||||
|
assert args.query == "Where are prompts configured?"
|
||||||
Reference in New Issue
Block a user