Compare commits
14 Commits
feature/cu
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
198044d033 | ||
|
|
a2e5f5294b | ||
|
|
8a2ea37871 | ||
|
|
7ddb4772c0 | ||
|
|
a1c21adbce | ||
|
|
d1b3c93a5a | ||
|
|
a6ee95b18a | ||
|
|
0175bc9c20 | ||
|
|
af47dfdde7 | ||
|
|
f13bd02fbd | ||
|
|
86287d8832 | ||
|
|
13beb98164 | ||
|
|
9b7353f336 | ||
|
|
9dd0e0b26f |
118
.github/workflows/build-reusable.yml
vendored
118
.github/workflows/build-reusable.yml
vendored
@@ -28,15 +28,36 @@ jobs:
|
|||||||
run: |
|
run: |
|
||||||
uv run --only-group lint pre-commit run --all-files --show-diff-on-failure
|
uv run --only-group lint pre-commit run --all-files --show-diff-on-failure
|
||||||
|
|
||||||
|
type-check:
|
||||||
|
name: Type Check with ty
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
with:
|
||||||
|
ref: ${{ inputs.ref }}
|
||||||
|
submodules: recursive
|
||||||
|
|
||||||
|
- name: Install uv and Python
|
||||||
|
uses: astral-sh/setup-uv@v6
|
||||||
|
with:
|
||||||
|
python-version: '3.11'
|
||||||
|
|
||||||
|
- name: Install ty
|
||||||
|
run: uv tool install ty
|
||||||
|
|
||||||
|
- name: Run ty type checker
|
||||||
|
run: |
|
||||||
|
# Run ty on core packages, apps, and tests
|
||||||
|
ty check packages/leann-core/src apps tests
|
||||||
|
|
||||||
build:
|
build:
|
||||||
needs: lint
|
needs: [lint, type-check]
|
||||||
name: Build ${{ matrix.os }} Python ${{ matrix.python }}
|
name: Build ${{ matrix.os }} Python ${{ matrix.python }}
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
include:
|
include:
|
||||||
- os: ubuntu-22.04
|
# Note: Python 3.9 dropped - uses PEP 604 union syntax (str | None)
|
||||||
python: '3.9'
|
# which requires Python 3.10+
|
||||||
- os: ubuntu-22.04
|
- os: ubuntu-22.04
|
||||||
python: '3.10'
|
python: '3.10'
|
||||||
- os: ubuntu-22.04
|
- os: ubuntu-22.04
|
||||||
@@ -46,8 +67,6 @@ jobs:
|
|||||||
- os: ubuntu-22.04
|
- os: ubuntu-22.04
|
||||||
python: '3.13'
|
python: '3.13'
|
||||||
# ARM64 Linux builds
|
# ARM64 Linux builds
|
||||||
- os: ubuntu-24.04-arm
|
|
||||||
python: '3.9'
|
|
||||||
- os: ubuntu-24.04-arm
|
- os: ubuntu-24.04-arm
|
||||||
python: '3.10'
|
python: '3.10'
|
||||||
- os: ubuntu-24.04-arm
|
- os: ubuntu-24.04-arm
|
||||||
@@ -56,8 +75,6 @@ jobs:
|
|||||||
python: '3.12'
|
python: '3.12'
|
||||||
- os: ubuntu-24.04-arm
|
- os: ubuntu-24.04-arm
|
||||||
python: '3.13'
|
python: '3.13'
|
||||||
- os: macos-14
|
|
||||||
python: '3.9'
|
|
||||||
- os: macos-14
|
- os: macos-14
|
||||||
python: '3.10'
|
python: '3.10'
|
||||||
- os: macos-14
|
- os: macos-14
|
||||||
@@ -66,8 +83,6 @@ jobs:
|
|||||||
python: '3.12'
|
python: '3.12'
|
||||||
- os: macos-14
|
- os: macos-14
|
||||||
python: '3.13'
|
python: '3.13'
|
||||||
- os: macos-15
|
|
||||||
python: '3.9'
|
|
||||||
- os: macos-15
|
- os: macos-15
|
||||||
python: '3.10'
|
python: '3.10'
|
||||||
- os: macos-15
|
- os: macos-15
|
||||||
@@ -76,16 +91,24 @@ jobs:
|
|||||||
python: '3.12'
|
python: '3.12'
|
||||||
- os: macos-15
|
- os: macos-15
|
||||||
python: '3.13'
|
python: '3.13'
|
||||||
- os: macos-13
|
# Intel Mac builds (x86_64) - replaces deprecated macos-13
|
||||||
python: '3.9'
|
# Note: Python 3.13 excluded - PyTorch has no wheels for macOS x86_64 + Python 3.13
|
||||||
- os: macos-13
|
# (PyTorch <=2.4.1 lacks cp313, PyTorch >=2.5.0 dropped Intel Mac support)
|
||||||
|
- os: macos-15-intel
|
||||||
python: '3.10'
|
python: '3.10'
|
||||||
- os: macos-13
|
- os: macos-15-intel
|
||||||
python: '3.11'
|
python: '3.11'
|
||||||
- os: macos-13
|
- os: macos-15-intel
|
||||||
python: '3.12'
|
python: '3.12'
|
||||||
# Note: macos-13 + Python 3.13 excluded due to PyTorch compatibility
|
# macOS 26 (beta) - arm64
|
||||||
# (PyTorch 2.5+ supports Python 3.13 but not Intel Mac x86_64)
|
- os: macos-26
|
||||||
|
python: '3.10'
|
||||||
|
- os: macos-26
|
||||||
|
python: '3.11'
|
||||||
|
- os: macos-26
|
||||||
|
python: '3.12'
|
||||||
|
- os: macos-26
|
||||||
|
python: '3.13'
|
||||||
runs-on: ${{ matrix.os }}
|
runs-on: ${{ matrix.os }}
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
@@ -204,13 +227,16 @@ jobs:
|
|||||||
# Use system clang for better compatibility
|
# Use system clang for better compatibility
|
||||||
export CC=clang
|
export CC=clang
|
||||||
export CXX=clang++
|
export CXX=clang++
|
||||||
# Homebrew libraries on each macOS version require matching minimum version
|
# Set deployment target based on runner
|
||||||
if [[ "${{ matrix.os }}" == "macos-13" ]]; then
|
# macos-15-intel runs macOS 15, so target 15.0 (system libraries require it)
|
||||||
export MACOSX_DEPLOYMENT_TARGET=13.0
|
if [[ "${{ matrix.os }}" == "macos-15-intel" ]]; then
|
||||||
elif [[ "${{ matrix.os }}" == "macos-14" ]]; then
|
|
||||||
export MACOSX_DEPLOYMENT_TARGET=14.0
|
|
||||||
elif [[ "${{ matrix.os }}" == "macos-15" ]]; then
|
|
||||||
export MACOSX_DEPLOYMENT_TARGET=15.0
|
export MACOSX_DEPLOYMENT_TARGET=15.0
|
||||||
|
elif [[ "${{ matrix.os }}" == macos-14* ]]; then
|
||||||
|
export MACOSX_DEPLOYMENT_TARGET=14.0
|
||||||
|
elif [[ "${{ matrix.os }}" == macos-15* ]]; then
|
||||||
|
export MACOSX_DEPLOYMENT_TARGET=15.0
|
||||||
|
elif [[ "${{ matrix.os }}" == macos-26* ]]; then
|
||||||
|
export MACOSX_DEPLOYMENT_TARGET=26.0
|
||||||
fi
|
fi
|
||||||
uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
|
uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
|
||||||
else
|
else
|
||||||
@@ -224,14 +250,16 @@ jobs:
|
|||||||
# Use system clang for better compatibility
|
# Use system clang for better compatibility
|
||||||
export CC=clang
|
export CC=clang
|
||||||
export CXX=clang++
|
export CXX=clang++
|
||||||
# DiskANN requires macOS 13.3+ for sgesdd_ LAPACK function
|
# Set deployment target based on runner
|
||||||
# But Homebrew libraries on each macOS version require matching minimum version
|
# macos-15-intel runs macOS 15, so target 15.0 (system libraries require it)
|
||||||
if [[ "${{ matrix.os }}" == "macos-13" ]]; then
|
if [[ "${{ matrix.os }}" == "macos-15-intel" ]]; then
|
||||||
export MACOSX_DEPLOYMENT_TARGET=13.3
|
|
||||||
elif [[ "${{ matrix.os }}" == "macos-14" ]]; then
|
|
||||||
export MACOSX_DEPLOYMENT_TARGET=14.0
|
|
||||||
elif [[ "${{ matrix.os }}" == "macos-15" ]]; then
|
|
||||||
export MACOSX_DEPLOYMENT_TARGET=15.0
|
export MACOSX_DEPLOYMENT_TARGET=15.0
|
||||||
|
elif [[ "${{ matrix.os }}" == macos-14* ]]; then
|
||||||
|
export MACOSX_DEPLOYMENT_TARGET=14.0
|
||||||
|
elif [[ "${{ matrix.os }}" == macos-15* ]]; then
|
||||||
|
export MACOSX_DEPLOYMENT_TARGET=15.0
|
||||||
|
elif [[ "${{ matrix.os }}" == macos-26* ]]; then
|
||||||
|
export MACOSX_DEPLOYMENT_TARGET=26.0
|
||||||
fi
|
fi
|
||||||
uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
|
uv build --wheel --python ${{ matrix.python }} --find-links ${GITHUB_WORKSPACE}/packages/leann-core/dist
|
||||||
else
|
else
|
||||||
@@ -269,16 +297,19 @@ jobs:
|
|||||||
if: runner.os == 'macOS'
|
if: runner.os == 'macOS'
|
||||||
run: |
|
run: |
|
||||||
# Determine deployment target based on runner OS
|
# Determine deployment target based on runner OS
|
||||||
# Must match the Homebrew libraries for each macOS version
|
# macos-15-intel runs macOS 15, so target 15.0 (system libraries require it)
|
||||||
if [[ "${{ matrix.os }}" == "macos-13" ]]; then
|
if [[ "${{ matrix.os }}" == "macos-15-intel" ]]; then
|
||||||
HNSW_TARGET="13.0"
|
|
||||||
DISKANN_TARGET="13.3"
|
|
||||||
elif [[ "${{ matrix.os }}" == "macos-14" ]]; then
|
|
||||||
HNSW_TARGET="14.0"
|
|
||||||
DISKANN_TARGET="14.0"
|
|
||||||
elif [[ "${{ matrix.os }}" == "macos-15" ]]; then
|
|
||||||
HNSW_TARGET="15.0"
|
HNSW_TARGET="15.0"
|
||||||
DISKANN_TARGET="15.0"
|
DISKANN_TARGET="15.0"
|
||||||
|
elif [[ "${{ matrix.os }}" == macos-14* ]]; then
|
||||||
|
HNSW_TARGET="14.0"
|
||||||
|
DISKANN_TARGET="14.0"
|
||||||
|
elif [[ "${{ matrix.os }}" == macos-15* ]]; then
|
||||||
|
HNSW_TARGET="15.0"
|
||||||
|
DISKANN_TARGET="15.0"
|
||||||
|
elif [[ "${{ matrix.os }}" == macos-26* ]]; then
|
||||||
|
HNSW_TARGET="26.0"
|
||||||
|
DISKANN_TARGET="26.0"
|
||||||
fi
|
fi
|
||||||
|
|
||||||
# Repair HNSW wheel
|
# Repair HNSW wheel
|
||||||
@@ -334,12 +365,15 @@ jobs:
|
|||||||
PY_TAG=$($UV_PY -c "import sys; print(f'cp{sys.version_info[0]}{sys.version_info[1]}')")
|
PY_TAG=$($UV_PY -c "import sys; print(f'cp{sys.version_info[0]}{sys.version_info[1]}')")
|
||||||
|
|
||||||
if [[ "$RUNNER_OS" == "macOS" ]]; then
|
if [[ "$RUNNER_OS" == "macOS" ]]; then
|
||||||
if [[ "${{ matrix.os }}" == "macos-13" ]]; then
|
# macos-15-intel runs macOS 15, so target 15.0 (system libraries require it)
|
||||||
export MACOSX_DEPLOYMENT_TARGET=13.3
|
if [[ "${{ matrix.os }}" == "macos-15-intel" ]]; then
|
||||||
elif [[ "${{ matrix.os }}" == "macos-14" ]]; then
|
|
||||||
export MACOSX_DEPLOYMENT_TARGET=14.0
|
|
||||||
elif [[ "${{ matrix.os }}" == "macos-15" ]]; then
|
|
||||||
export MACOSX_DEPLOYMENT_TARGET=15.0
|
export MACOSX_DEPLOYMENT_TARGET=15.0
|
||||||
|
elif [[ "${{ matrix.os }}" == macos-14* ]]; then
|
||||||
|
export MACOSX_DEPLOYMENT_TARGET=14.0
|
||||||
|
elif [[ "${{ matrix.os }}" == macos-15* ]]; then
|
||||||
|
export MACOSX_DEPLOYMENT_TARGET=15.0
|
||||||
|
elif [[ "${{ matrix.os }}" == macos-26* ]]; then
|
||||||
|
export MACOSX_DEPLOYMENT_TARGET=26.0
|
||||||
fi
|
fi
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
|||||||
50
README.md
50
README.md
@@ -36,7 +36,7 @@ LEANN is an innovative vector database that democratizes personal AI. Transform
|
|||||||
|
|
||||||
LEANN achieves this through *graph-based selective recomputation* with *high-degree preserving pruning*, computing embeddings on-demand instead of storing them all. [Illustration Fig →](#️-architecture--how-it-works) | [Paper →](https://arxiv.org/abs/2506.08276)
|
LEANN achieves this through *graph-based selective recomputation* with *high-degree preserving pruning*, computing embeddings on-demand instead of storing them all. [Illustration Fig →](#️-architecture--how-it-works) | [Paper →](https://arxiv.org/abs/2506.08276)
|
||||||
|
|
||||||
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can semantic search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)** ([WeChat](#-wechat-detective-unlock-your-golden-memories), [iMessage](#-imessage-history-your-personal-conversation-archive)), **[agent memory](#-chatgpt-chat-history-your-personal-ai-conversation-archive)** ([ChatGPT](#-chatgpt-chat-history-your-personal-ai-conversation-archive), [Claude](#-claude-chat-history-your-personal-ai-conversation-archive)), **[live data](#mcp-integration-rag-on-live-data-from-any-platform)** ([Slack](#mcp-integration-rag-on-live-data-from-any-platform), [Twitter](#mcp-integration-rag-on-live-data-from-any-platform)), **[codebase](#-claude-code-integration-transform-your-development-workflow)**\* , or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
|
**Ready to RAG Everything?** Transform your laptop into a personal AI assistant that can semantic search your **[file system](#-personal-data-manager-process-any-documents-pdf-txt-md)**, **[emails](#-your-personal-email-secretary-rag-on-apple-mail)**, **[browser history](#-time-machine-for-the-web-rag-your-entire-browser-history)**, **[chat history](#-wechat-detective-unlock-your-golden-memories)** ([WeChat](#-wechat-detective-unlock-your-golden-memories), [iMessage](#-imessage-history-your-personal-conversation-archive)), **[agent memory](#-chatgpt-chat-history-your-personal-ai-conversation-archive)** ([ChatGPT](#-chatgpt-chat-history-your-personal-ai-conversation-archive), [Claude](#-claude-chat-history-your-personal-ai-conversation-archive)), **[live data](#mcp-integration-rag-on-live-data-from-any-platform)** ([Slack](#slack-messages-search-your-team-conversations), [Twitter](#-twitter-bookmarks-your-personal-tweet-library)), **[codebase](#-claude-code-integration-transform-your-development-workflow)**\* , or external knowledge bases (i.e., 60M documents) - all on your laptop, with zero cloud costs and complete privacy.
|
||||||
|
|
||||||
|
|
||||||
\* Claude Code only supports basic `grep`-style keyword search. **LEANN** is a drop-in **semantic search MCP service fully compatible with Claude Code**, unlocking intelligent retrieval without changing your workflow. 🔥 Check out [the easy setup →](packages/leann-mcp/README.md)
|
\* Claude Code only supports basic `grep`-style keyword search. **LEANN** is a drop-in **semantic search MCP service fully compatible with Claude Code**, unlocking intelligent retrieval without changing your workflow. 🔥 Check out [the easy setup →](packages/leann-mcp/README.md)
|
||||||
@@ -392,6 +392,54 @@ python -m apps.code_rag --repo-dir "./my_codebase" --query "How does authenticat
|
|||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
|
### 🎨 ColQwen: Multimodal PDF Retrieval with Vision-Language Models
|
||||||
|
|
||||||
|
Search through PDFs using both text and visual understanding with ColQwen2/ColPali models. Perfect for research papers, technical documents, and any PDFs with complex layouts, figures, or diagrams.
|
||||||
|
|
||||||
|
> **🍎 Mac Users**: ColQwen is optimized for Apple Silicon with MPS acceleration for faster inference!
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Build index from PDFs
|
||||||
|
python -m apps.colqwen_rag build --pdfs ./my_papers/ --index research_papers
|
||||||
|
|
||||||
|
# Search with text queries
|
||||||
|
python -m apps.colqwen_rag search research_papers "How does attention mechanism work?"
|
||||||
|
|
||||||
|
# Interactive Q&A
|
||||||
|
python -m apps.colqwen_rag ask research_papers --interactive
|
||||||
|
```
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary><strong>📋 Click to expand: ColQwen Setup & Usage</strong></summary>
|
||||||
|
|
||||||
|
#### Prerequisites
|
||||||
|
```bash
|
||||||
|
# Install dependencies
|
||||||
|
uv pip install colpali_engine pdf2image pillow matplotlib qwen_vl_utils einops seaborn
|
||||||
|
brew install poppler # macOS only, for PDF processing
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Build Index
|
||||||
|
```bash
|
||||||
|
python -m apps.colqwen_rag build \
|
||||||
|
--pdfs ./pdf_directory/ \
|
||||||
|
--index my_index \
|
||||||
|
--model colqwen2 # or colpali
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Search
|
||||||
|
```bash
|
||||||
|
python -m apps.colqwen_rag search my_index "your question here" --top-k 5
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Models
|
||||||
|
- **ColQwen2** (`colqwen2`): Latest vision-language model with improved performance
|
||||||
|
- **ColPali** (`colpali`): Proven multimodal retriever
|
||||||
|
|
||||||
|
For detailed usage, see the [ColQwen Guide](docs/COLQWEN_GUIDE.md).
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
### 📧 Your Personal Email Secretary: RAG on Apple Mail!
|
### 📧 Your Personal Email Secretary: RAG on Apple Mail!
|
||||||
|
|
||||||
> **Note:** The examples below currently support macOS only. Windows support coming soon.
|
> **Note:** The examples below currently support macOS only. Windows support coming soon.
|
||||||
|
|||||||
@@ -257,8 +257,8 @@ class BaseRAGExample(ABC):
|
|||||||
pass
|
pass
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
async def load_data(self, args) -> list[str]:
|
async def load_data(self, args) -> list[dict[str, Any]]:
|
||||||
"""Load data from the source. Returns list of text chunks."""
|
"""Load data from the source. Returns list of text chunks as dicts with 'text' and 'metadata' keys."""
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def get_llm_config(self, args) -> dict[str, Any]:
|
def get_llm_config(self, args) -> dict[str, Any]:
|
||||||
@@ -282,8 +282,8 @@ class BaseRAGExample(ABC):
|
|||||||
|
|
||||||
return config
|
return config
|
||||||
|
|
||||||
async def build_index(self, args, texts: list[str]) -> str:
|
async def build_index(self, args, texts: list[dict[str, Any]]) -> str:
|
||||||
"""Build LEANN index from texts."""
|
"""Build LEANN index from text chunks (dicts with 'text' and 'metadata' keys)."""
|
||||||
index_path = str(Path(args.index_dir) / f"{self.default_index_name}.leann")
|
index_path = str(Path(args.index_dir) / f"{self.default_index_name}.leann")
|
||||||
|
|
||||||
print(f"\n[Building Index] Creating {self.name} index...")
|
print(f"\n[Building Index] Creating {self.name} index...")
|
||||||
@@ -314,8 +314,14 @@ class BaseRAGExample(ABC):
|
|||||||
batch_size = 1000
|
batch_size = 1000
|
||||||
for i in range(0, len(texts), batch_size):
|
for i in range(0, len(texts), batch_size):
|
||||||
batch = texts[i : i + batch_size]
|
batch = texts[i : i + batch_size]
|
||||||
for text in batch:
|
for item in batch:
|
||||||
builder.add_text(text)
|
# Handle both dict format (from create_text_chunks) and plain strings
|
||||||
|
if isinstance(item, dict):
|
||||||
|
text = item.get("text", "")
|
||||||
|
metadata = item.get("metadata")
|
||||||
|
builder.add_text(text, metadata)
|
||||||
|
else:
|
||||||
|
builder.add_text(item)
|
||||||
print(f"Added {min(i + batch_size, len(texts))}/{len(texts)} texts...")
|
print(f"Added {min(i + batch_size, len(texts))}/{len(texts)} texts...")
|
||||||
|
|
||||||
print("Building index structure...")
|
print("Building index structure...")
|
||||||
|
|||||||
@@ -6,6 +6,7 @@ Supports Chrome browser history.
|
|||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
# Add parent directory to path for imports
|
# Add parent directory to path for imports
|
||||||
sys.path.insert(0, str(Path(__file__).parent))
|
sys.path.insert(0, str(Path(__file__).parent))
|
||||||
@@ -85,7 +86,7 @@ class BrowserRAG(BaseRAGExample):
|
|||||||
|
|
||||||
return profiles
|
return profiles
|
||||||
|
|
||||||
async def load_data(self, args) -> list[str]:
|
async def load_data(self, args) -> list[dict[str, Any]]:
|
||||||
"""Load browser history and convert to text chunks."""
|
"""Load browser history and convert to text chunks."""
|
||||||
# Determine Chrome profiles
|
# Determine Chrome profiles
|
||||||
if args.chrome_profile and not args.auto_find_profiles:
|
if args.chrome_profile and not args.auto_find_profiles:
|
||||||
|
|||||||
@@ -5,6 +5,7 @@ Supports ChatGPT export data from chat.html files.
|
|||||||
|
|
||||||
import sys
|
import sys
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
# Add parent directory to path for imports
|
# Add parent directory to path for imports
|
||||||
sys.path.insert(0, str(Path(__file__).parent))
|
sys.path.insert(0, str(Path(__file__).parent))
|
||||||
@@ -80,7 +81,7 @@ class ChatGPTRAG(BaseRAGExample):
|
|||||||
|
|
||||||
return export_files
|
return export_files
|
||||||
|
|
||||||
async def load_data(self, args) -> list[str]:
|
async def load_data(self, args) -> list[dict[str, Any]]:
|
||||||
"""Load ChatGPT export data and convert to text chunks."""
|
"""Load ChatGPT export data and convert to text chunks."""
|
||||||
export_path = Path(args.export_path)
|
export_path = Path(args.export_path)
|
||||||
|
|
||||||
|
|||||||
@@ -5,6 +5,7 @@ Supports Claude export data from JSON files.
|
|||||||
|
|
||||||
import sys
|
import sys
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
# Add parent directory to path for imports
|
# Add parent directory to path for imports
|
||||||
sys.path.insert(0, str(Path(__file__).parent))
|
sys.path.insert(0, str(Path(__file__).parent))
|
||||||
@@ -80,7 +81,7 @@ class ClaudeRAG(BaseRAGExample):
|
|||||||
|
|
||||||
return export_files
|
return export_files
|
||||||
|
|
||||||
async def load_data(self, args) -> list[str]:
|
async def load_data(self, args) -> list[dict[str, Any]]:
|
||||||
"""Load Claude export data and convert to text chunks."""
|
"""Load Claude export data and convert to text chunks."""
|
||||||
export_path = Path(args.export_path)
|
export_path = Path(args.export_path)
|
||||||
|
|
||||||
|
|||||||
@@ -6,6 +6,7 @@ optimized chunking parameters.
|
|||||||
|
|
||||||
import sys
|
import sys
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
# Add parent directory to path for imports
|
# Add parent directory to path for imports
|
||||||
sys.path.insert(0, str(Path(__file__).parent))
|
sys.path.insert(0, str(Path(__file__).parent))
|
||||||
@@ -77,7 +78,7 @@ class CodeRAG(BaseRAGExample):
|
|||||||
help="Try to preserve import statements in chunks (default: True)",
|
help="Try to preserve import statements in chunks (default: True)",
|
||||||
)
|
)
|
||||||
|
|
||||||
async def load_data(self, args) -> list[str]:
|
async def load_data(self, args) -> list[dict[str, Any]]:
|
||||||
"""Load code files and convert to AST-aware chunks."""
|
"""Load code files and convert to AST-aware chunks."""
|
||||||
print(f"🔍 Scanning code repository: {args.repo_dir}")
|
print(f"🔍 Scanning code repository: {args.repo_dir}")
|
||||||
print(f"📁 Including extensions: {args.include_extensions}")
|
print(f"📁 Including extensions: {args.include_extensions}")
|
||||||
@@ -88,14 +89,6 @@ class CodeRAG(BaseRAGExample):
|
|||||||
if not repo_path.exists():
|
if not repo_path.exists():
|
||||||
raise ValueError(f"Repository directory not found: {args.repo_dir}")
|
raise ValueError(f"Repository directory not found: {args.repo_dir}")
|
||||||
|
|
||||||
# Load code files with filtering
|
|
||||||
reader_kwargs = {
|
|
||||||
"recursive": True,
|
|
||||||
"encoding": "utf-8",
|
|
||||||
"required_exts": args.include_extensions,
|
|
||||||
"exclude_hidden": True,
|
|
||||||
}
|
|
||||||
|
|
||||||
# Create exclusion filter
|
# Create exclusion filter
|
||||||
def file_filter(file_path: str) -> bool:
|
def file_filter(file_path: str) -> bool:
|
||||||
"""Filter out unwanted files and directories."""
|
"""Filter out unwanted files and directories."""
|
||||||
@@ -120,8 +113,11 @@ class CodeRAG(BaseRAGExample):
|
|||||||
# Load documents with file filtering
|
# Load documents with file filtering
|
||||||
documents = SimpleDirectoryReader(
|
documents = SimpleDirectoryReader(
|
||||||
args.repo_dir,
|
args.repo_dir,
|
||||||
file_extractor=None, # Use default extractors
|
file_extractor=None,
|
||||||
**reader_kwargs,
|
recursive=True,
|
||||||
|
encoding="utf-8",
|
||||||
|
required_exts=args.include_extensions,
|
||||||
|
exclude_hidden=True,
|
||||||
).load_data(show_progress=True)
|
).load_data(show_progress=True)
|
||||||
|
|
||||||
# Apply custom filtering
|
# Apply custom filtering
|
||||||
|
|||||||
364
apps/colqwen_rag.py
Normal file
364
apps/colqwen_rag.py
Normal file
@@ -0,0 +1,364 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
"""
|
||||||
|
ColQwen RAG - Easy-to-use multimodal PDF retrieval with ColQwen2/ColPali
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
python -m apps.colqwen_rag build --pdfs ./my_pdfs/ --index my_index
|
||||||
|
python -m apps.colqwen_rag search my_index "How does attention work?"
|
||||||
|
python -m apps.colqwen_rag ask my_index --interactive
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Optional, cast
|
||||||
|
|
||||||
|
# Add LEANN packages to path
|
||||||
|
_repo_root = Path(__file__).resolve().parents[1]
|
||||||
|
_leann_core_src = _repo_root / "packages" / "leann-core" / "src"
|
||||||
|
_leann_hnsw_pkg = _repo_root / "packages" / "leann-backend-hnsw"
|
||||||
|
if str(_leann_core_src) not in sys.path:
|
||||||
|
sys.path.append(str(_leann_core_src))
|
||||||
|
if str(_leann_hnsw_pkg) not in sys.path:
|
||||||
|
sys.path.append(str(_leann_hnsw_pkg))
|
||||||
|
|
||||||
|
import torch # noqa: E402
|
||||||
|
from colpali_engine import ColPali, ColPaliProcessor, ColQwen2, ColQwen2Processor # noqa: E402
|
||||||
|
from colpali_engine.utils.torch_utils import ListDataset # noqa: E402
|
||||||
|
from pdf2image import convert_from_path # noqa: E402
|
||||||
|
from PIL import Image # noqa: E402
|
||||||
|
from torch.utils.data import DataLoader # noqa: E402
|
||||||
|
from tqdm import tqdm # noqa: E402
|
||||||
|
|
||||||
|
# Import the existing multi-vector implementation
|
||||||
|
sys.path.append(str(_repo_root / "apps" / "multimodal" / "vision-based-pdf-multi-vector"))
|
||||||
|
from leann_multi_vector import LeannMultiVector # noqa: E402
|
||||||
|
|
||||||
|
|
||||||
|
class ColQwenRAG:
|
||||||
|
"""Easy-to-use ColQwen RAG system for multimodal PDF retrieval."""
|
||||||
|
|
||||||
|
def __init__(self, model_type: str = "colpali"):
|
||||||
|
"""
|
||||||
|
Initialize ColQwen RAG system.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model_type: "colqwen2" or "colpali"
|
||||||
|
"""
|
||||||
|
self.model_type = model_type
|
||||||
|
self.device = self._get_device()
|
||||||
|
# Use float32 on MPS to avoid memory issues, float16 on CUDA, bfloat16 on CPU
|
||||||
|
if self.device.type == "mps":
|
||||||
|
self.dtype = torch.float32
|
||||||
|
elif self.device.type == "cuda":
|
||||||
|
self.dtype = torch.float16
|
||||||
|
else:
|
||||||
|
self.dtype = torch.bfloat16
|
||||||
|
|
||||||
|
print(f"🚀 Initializing {model_type.upper()} on {self.device} with {self.dtype}")
|
||||||
|
|
||||||
|
# Load model and processor with MPS-optimized settings
|
||||||
|
try:
|
||||||
|
if model_type == "colqwen2":
|
||||||
|
self.model_name = "vidore/colqwen2-v1.0"
|
||||||
|
if self.device.type == "mps":
|
||||||
|
# For MPS, load on CPU first then move to avoid memory allocation issues
|
||||||
|
self.model = ColQwen2.from_pretrained(
|
||||||
|
self.model_name,
|
||||||
|
torch_dtype=self.dtype,
|
||||||
|
device_map="cpu",
|
||||||
|
low_cpu_mem_usage=True,
|
||||||
|
).eval()
|
||||||
|
self.model = self.model.to(self.device)
|
||||||
|
else:
|
||||||
|
self.model = ColQwen2.from_pretrained(
|
||||||
|
self.model_name,
|
||||||
|
torch_dtype=self.dtype,
|
||||||
|
device_map=self.device,
|
||||||
|
low_cpu_mem_usage=True,
|
||||||
|
).eval()
|
||||||
|
self.processor = ColQwen2Processor.from_pretrained(self.model_name)
|
||||||
|
else: # colpali
|
||||||
|
self.model_name = "vidore/colpali-v1.2"
|
||||||
|
if self.device.type == "mps":
|
||||||
|
# For MPS, load on CPU first then move to avoid memory allocation issues
|
||||||
|
self.model = ColPali.from_pretrained(
|
||||||
|
self.model_name,
|
||||||
|
torch_dtype=self.dtype,
|
||||||
|
device_map="cpu",
|
||||||
|
low_cpu_mem_usage=True,
|
||||||
|
).eval()
|
||||||
|
self.model = self.model.to(self.device)
|
||||||
|
else:
|
||||||
|
self.model = ColPali.from_pretrained(
|
||||||
|
self.model_name,
|
||||||
|
torch_dtype=self.dtype,
|
||||||
|
device_map=self.device,
|
||||||
|
low_cpu_mem_usage=True,
|
||||||
|
).eval()
|
||||||
|
self.processor = ColPaliProcessor.from_pretrained(self.model_name)
|
||||||
|
except Exception as e:
|
||||||
|
if "memory" in str(e).lower() or "offload" in str(e).lower():
|
||||||
|
print(f"⚠️ Memory constraint on {self.device}, using CPU with optimizations...")
|
||||||
|
self.device = torch.device("cpu")
|
||||||
|
self.dtype = torch.float32
|
||||||
|
|
||||||
|
if model_type == "colqwen2":
|
||||||
|
self.model = ColQwen2.from_pretrained(
|
||||||
|
self.model_name,
|
||||||
|
torch_dtype=self.dtype,
|
||||||
|
device_map="cpu",
|
||||||
|
low_cpu_mem_usage=True,
|
||||||
|
).eval()
|
||||||
|
else:
|
||||||
|
self.model = ColPali.from_pretrained(
|
||||||
|
self.model_name,
|
||||||
|
torch_dtype=self.dtype,
|
||||||
|
device_map="cpu",
|
||||||
|
low_cpu_mem_usage=True,
|
||||||
|
).eval()
|
||||||
|
else:
|
||||||
|
raise
|
||||||
|
|
||||||
|
def _get_device(self):
|
||||||
|
"""Auto-select best available device."""
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
return torch.device("cuda")
|
||||||
|
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
||||||
|
return torch.device("mps")
|
||||||
|
else:
|
||||||
|
return torch.device("cpu")
|
||||||
|
|
||||||
|
def build_index(self, pdf_paths: list[str], index_name: str, pages_dir: Optional[str] = None):
|
||||||
|
"""
|
||||||
|
Build multimodal index from PDF files.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
pdf_paths: List of PDF file paths
|
||||||
|
index_name: Name for the index
|
||||||
|
pages_dir: Directory to save page images (optional)
|
||||||
|
"""
|
||||||
|
print(f"Building index '{index_name}' from {len(pdf_paths)} PDFs...")
|
||||||
|
|
||||||
|
# Convert PDFs to images
|
||||||
|
all_images = []
|
||||||
|
all_metadata = []
|
||||||
|
|
||||||
|
if pages_dir:
|
||||||
|
os.makedirs(pages_dir, exist_ok=True)
|
||||||
|
|
||||||
|
for pdf_path in tqdm(pdf_paths, desc="Converting PDFs"):
|
||||||
|
try:
|
||||||
|
images = convert_from_path(pdf_path, dpi=150)
|
||||||
|
pdf_name = Path(pdf_path).stem
|
||||||
|
|
||||||
|
for i, image in enumerate(images):
|
||||||
|
# Save image if pages_dir specified
|
||||||
|
if pages_dir:
|
||||||
|
image_path = Path(pages_dir) / f"{pdf_name}_page_{i + 1}.png"
|
||||||
|
image.save(image_path)
|
||||||
|
|
||||||
|
all_images.append(image)
|
||||||
|
all_metadata.append(
|
||||||
|
{
|
||||||
|
"pdf_path": pdf_path,
|
||||||
|
"pdf_name": pdf_name,
|
||||||
|
"page_number": i + 1,
|
||||||
|
"image_path": str(image_path) if pages_dir else None,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"❌ Error processing {pdf_path}: {e}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
print(f"📄 Converted {len(all_images)} pages from {len(pdf_paths)} PDFs")
|
||||||
|
print(f"All metadata: {all_metadata}")
|
||||||
|
|
||||||
|
# Generate embeddings
|
||||||
|
print("🧠 Generating embeddings...")
|
||||||
|
embeddings = self._embed_images(all_images)
|
||||||
|
|
||||||
|
# Build LEANN index
|
||||||
|
print("🔍 Building LEANN index...")
|
||||||
|
leann_mv = LeannMultiVector(
|
||||||
|
index_path=index_name,
|
||||||
|
dim=embeddings.shape[-1],
|
||||||
|
embedding_model_name=self.model_type,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Create collection and insert data
|
||||||
|
leann_mv.create_collection()
|
||||||
|
for i, (embedding, metadata) in enumerate(zip(embeddings, all_metadata)):
|
||||||
|
data = {
|
||||||
|
"doc_id": i,
|
||||||
|
"filepath": metadata.get("image_path", ""),
|
||||||
|
"colbert_vecs": embedding.numpy(), # Convert tensor to numpy
|
||||||
|
}
|
||||||
|
leann_mv.insert(data)
|
||||||
|
|
||||||
|
# Build the index
|
||||||
|
leann_mv.create_index()
|
||||||
|
print(f"✅ Index '{index_name}' built successfully!")
|
||||||
|
|
||||||
|
return leann_mv
|
||||||
|
|
||||||
|
def search(self, index_name: str, query: str, top_k: int = 5):
|
||||||
|
"""
|
||||||
|
Search the index with a text query.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
index_name: Name of the index to search
|
||||||
|
query: Text query
|
||||||
|
top_k: Number of results to return
|
||||||
|
"""
|
||||||
|
print(f"🔍 Searching '{index_name}' for: '{query}'")
|
||||||
|
|
||||||
|
# Load index
|
||||||
|
leann_mv = LeannMultiVector(
|
||||||
|
index_path=index_name,
|
||||||
|
dim=128, # Will be updated when loading
|
||||||
|
embedding_model_name=self.model_type,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Generate query embedding
|
||||||
|
query_embedding = self._embed_query(query)
|
||||||
|
|
||||||
|
# Search (returns list of (score, doc_id) tuples)
|
||||||
|
search_results = leann_mv.search(query_embedding.numpy(), topk=top_k)
|
||||||
|
|
||||||
|
# Display results
|
||||||
|
print(f"\n📋 Top {len(search_results)} results:")
|
||||||
|
for i, (score, doc_id) in enumerate(search_results, 1):
|
||||||
|
# Get metadata for this doc_id (we need to load the metadata)
|
||||||
|
print(f"{i}. Score: {score:.3f} | Doc ID: {doc_id}")
|
||||||
|
|
||||||
|
return search_results
|
||||||
|
|
||||||
|
def ask(self, index_name: str, interactive: bool = False):
|
||||||
|
"""
|
||||||
|
Interactive Q&A with the indexed documents.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
index_name: Name of the index to query
|
||||||
|
interactive: Whether to run in interactive mode
|
||||||
|
"""
|
||||||
|
print(f"💬 ColQwen Chat with '{index_name}'")
|
||||||
|
|
||||||
|
if interactive:
|
||||||
|
print("Type 'quit' to exit, 'help' for commands")
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
query = input("\n🤔 Your question: ").strip()
|
||||||
|
if query.lower() in ["quit", "exit", "q"]:
|
||||||
|
break
|
||||||
|
elif query.lower() == "help":
|
||||||
|
print("Commands: quit/exit/q (exit), help (this message)")
|
||||||
|
continue
|
||||||
|
elif not query:
|
||||||
|
continue
|
||||||
|
|
||||||
|
self.search(index_name, query, top_k=3)
|
||||||
|
|
||||||
|
# TODO: Add answer generation with Qwen-VL
|
||||||
|
print("\n💡 For detailed answers, we can integrate Qwen-VL here!")
|
||||||
|
|
||||||
|
except KeyboardInterrupt:
|
||||||
|
print("\n👋 Goodbye!")
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
query = input("🤔 Your question: ").strip()
|
||||||
|
if query:
|
||||||
|
self.search(index_name, query)
|
||||||
|
|
||||||
|
def _embed_images(self, images: list[Image.Image]) -> torch.Tensor:
|
||||||
|
"""Generate embeddings for a list of images."""
|
||||||
|
dataset = ListDataset(images)
|
||||||
|
dataloader = DataLoader(dataset, batch_size=1, shuffle=False, collate_fn=lambda x: x)
|
||||||
|
|
||||||
|
embeddings = []
|
||||||
|
with torch.no_grad():
|
||||||
|
for batch in tqdm(dataloader, desc="Embedding images"):
|
||||||
|
batch_images = cast(list, batch)
|
||||||
|
batch_inputs = self.processor.process_images(batch_images).to(self.device)
|
||||||
|
batch_embeddings = self.model(**batch_inputs)
|
||||||
|
embeddings.append(batch_embeddings.cpu())
|
||||||
|
|
||||||
|
return torch.cat(embeddings, dim=0)
|
||||||
|
|
||||||
|
def _embed_query(self, query: str) -> torch.Tensor:
|
||||||
|
"""Generate embedding for a text query."""
|
||||||
|
with torch.no_grad():
|
||||||
|
query_inputs = self.processor.process_queries([query]).to(self.device)
|
||||||
|
query_embedding = self.model(**query_inputs)
|
||||||
|
return query_embedding.cpu()
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = argparse.ArgumentParser(description="ColQwen RAG - Easy multimodal PDF retrieval")
|
||||||
|
subparsers = parser.add_subparsers(dest="command", help="Available commands")
|
||||||
|
|
||||||
|
# Build command
|
||||||
|
build_parser = subparsers.add_parser("build", help="Build index from PDFs")
|
||||||
|
build_parser.add_argument("--pdfs", required=True, help="Directory containing PDF files")
|
||||||
|
build_parser.add_argument("--index", required=True, help="Index name")
|
||||||
|
build_parser.add_argument(
|
||||||
|
"--model", choices=["colqwen2", "colpali"], default="colqwen2", help="Model to use"
|
||||||
|
)
|
||||||
|
build_parser.add_argument("--pages-dir", help="Directory to save page images")
|
||||||
|
|
||||||
|
# Search command
|
||||||
|
search_parser = subparsers.add_parser("search", help="Search the index")
|
||||||
|
search_parser.add_argument("index", help="Index name")
|
||||||
|
search_parser.add_argument("query", help="Search query")
|
||||||
|
search_parser.add_argument("--top-k", type=int, default=5, help="Number of results")
|
||||||
|
search_parser.add_argument(
|
||||||
|
"--model", choices=["colqwen2", "colpali"], default="colqwen2", help="Model to use"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Ask command
|
||||||
|
ask_parser = subparsers.add_parser("ask", help="Interactive Q&A")
|
||||||
|
ask_parser.add_argument("index", help="Index name")
|
||||||
|
ask_parser.add_argument("--interactive", action="store_true", help="Interactive mode")
|
||||||
|
ask_parser.add_argument(
|
||||||
|
"--model", choices=["colqwen2", "colpali"], default="colqwen2", help="Model to use"
|
||||||
|
)
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
if not args.command:
|
||||||
|
parser.print_help()
|
||||||
|
return
|
||||||
|
|
||||||
|
# Initialize ColQwen RAG
|
||||||
|
if args.command == "build":
|
||||||
|
colqwen = ColQwenRAG(args.model)
|
||||||
|
|
||||||
|
# Get PDF files
|
||||||
|
pdf_dir = Path(args.pdfs)
|
||||||
|
if pdf_dir.is_file() and pdf_dir.suffix.lower() == ".pdf":
|
||||||
|
pdf_paths = [str(pdf_dir)]
|
||||||
|
elif pdf_dir.is_dir():
|
||||||
|
pdf_paths = [str(p) for p in pdf_dir.glob("*.pdf")]
|
||||||
|
else:
|
||||||
|
print(f"❌ Invalid PDF path: {args.pdfs}")
|
||||||
|
return
|
||||||
|
|
||||||
|
if not pdf_paths:
|
||||||
|
print(f"❌ No PDF files found in {args.pdfs}")
|
||||||
|
return
|
||||||
|
|
||||||
|
colqwen.build_index(pdf_paths, args.index, args.pages_dir)
|
||||||
|
|
||||||
|
elif args.command == "search":
|
||||||
|
colqwen = ColQwenRAG(args.model)
|
||||||
|
colqwen.search(args.index, args.query, args.top_k)
|
||||||
|
|
||||||
|
elif args.command == "ask":
|
||||||
|
colqwen = ColQwenRAG(args.model)
|
||||||
|
colqwen.ask(args.index, args.interactive)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
@@ -5,6 +5,7 @@ Supports PDF, TXT, MD, and other document formats.
|
|||||||
|
|
||||||
import sys
|
import sys
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
# Add parent directory to path for imports
|
# Add parent directory to path for imports
|
||||||
sys.path.insert(0, str(Path(__file__).parent))
|
sys.path.insert(0, str(Path(__file__).parent))
|
||||||
@@ -51,7 +52,7 @@ class DocumentRAG(BaseRAGExample):
|
|||||||
help="Enable AST-aware chunking for code files in the data directory",
|
help="Enable AST-aware chunking for code files in the data directory",
|
||||||
)
|
)
|
||||||
|
|
||||||
async def load_data(self, args) -> list[str]:
|
async def load_data(self, args) -> list[dict[str, Any]]:
|
||||||
"""Load documents and convert to text chunks."""
|
"""Load documents and convert to text chunks."""
|
||||||
print(f"Loading documents from: {args.data_dir}")
|
print(f"Loading documents from: {args.data_dir}")
|
||||||
if args.file_types:
|
if args.file_types:
|
||||||
@@ -65,16 +66,12 @@ class DocumentRAG(BaseRAGExample):
|
|||||||
raise ValueError(f"Data directory not found: {args.data_dir}")
|
raise ValueError(f"Data directory not found: {args.data_dir}")
|
||||||
|
|
||||||
# Load documents
|
# Load documents
|
||||||
reader_kwargs = {
|
documents = SimpleDirectoryReader(
|
||||||
"recursive": True,
|
args.data_dir,
|
||||||
"encoding": "utf-8",
|
recursive=True,
|
||||||
}
|
encoding="utf-8",
|
||||||
if args.file_types:
|
required_exts=args.file_types if args.file_types else None,
|
||||||
reader_kwargs["required_exts"] = args.file_types
|
).load_data(show_progress=True)
|
||||||
|
|
||||||
documents = SimpleDirectoryReader(args.data_dir, **reader_kwargs).load_data(
|
|
||||||
show_progress=True
|
|
||||||
)
|
|
||||||
|
|
||||||
if not documents:
|
if not documents:
|
||||||
print(f"No documents found in {args.data_dir} with extensions {args.file_types}")
|
print(f"No documents found in {args.data_dir} with extensions {args.file_types}")
|
||||||
|
|||||||
@@ -127,11 +127,12 @@ class EmlxMboxReader(MboxReader):
|
|||||||
|
|
||||||
def load_data(
|
def load_data(
|
||||||
self,
|
self,
|
||||||
directory: Path,
|
file: Path, # Note: for EmlxMboxReader, this is actually a directory
|
||||||
extra_info: dict | None = None,
|
extra_info: dict | None = None,
|
||||||
fs: AbstractFileSystem | None = None,
|
fs: AbstractFileSystem | None = None,
|
||||||
) -> list[Document]:
|
) -> list[Document]:
|
||||||
"""Parse .emlx files from directory into strings using MboxReader logic."""
|
"""Parse .emlx files from directory into strings using MboxReader logic."""
|
||||||
|
directory = file # Rename for clarity - this is a directory of .emlx files
|
||||||
import os
|
import os
|
||||||
import tempfile
|
import tempfile
|
||||||
|
|
||||||
|
|||||||
@@ -5,6 +5,7 @@ Supports Apple Mail on macOS.
|
|||||||
|
|
||||||
import sys
|
import sys
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
# Add parent directory to path for imports
|
# Add parent directory to path for imports
|
||||||
sys.path.insert(0, str(Path(__file__).parent))
|
sys.path.insert(0, str(Path(__file__).parent))
|
||||||
@@ -64,7 +65,7 @@ class EmailRAG(BaseRAGExample):
|
|||||||
|
|
||||||
return messages_dirs
|
return messages_dirs
|
||||||
|
|
||||||
async def load_data(self, args) -> list[str]:
|
async def load_data(self, args) -> list[dict[str, Any]]:
|
||||||
"""Load emails and convert to text chunks."""
|
"""Load emails and convert to text chunks."""
|
||||||
# Determine mail directories
|
# Determine mail directories
|
||||||
if args.mail_path:
|
if args.mail_path:
|
||||||
|
|||||||
@@ -86,7 +86,7 @@ class WeChatHistoryReader(BaseReader):
|
|||||||
text=True,
|
text=True,
|
||||||
timeout=5,
|
timeout=5,
|
||||||
)
|
)
|
||||||
return result.returncode == 0 and result.stdout.strip()
|
return result.returncode == 0 and bool(result.stdout.strip())
|
||||||
except Exception:
|
except Exception:
|
||||||
return False
|
return False
|
||||||
|
|
||||||
@@ -314,7 +314,9 @@ class WeChatHistoryReader(BaseReader):
|
|||||||
|
|
||||||
return concatenated_groups
|
return concatenated_groups
|
||||||
|
|
||||||
def _create_concatenated_content(self, message_group: dict, contact_name: str) -> str:
|
def _create_concatenated_content(
|
||||||
|
self, message_group: dict, contact_name: str
|
||||||
|
) -> tuple[str, str]:
|
||||||
"""
|
"""
|
||||||
Create concatenated content from a group of messages.
|
Create concatenated content from a group of messages.
|
||||||
|
|
||||||
|
|||||||
219
apps/image_rag.py
Normal file
219
apps/image_rag.py
Normal file
@@ -0,0 +1,219 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
"""
|
||||||
|
CLIP Image RAG Application
|
||||||
|
|
||||||
|
This application enables RAG (Retrieval-Augmented Generation) on images using CLIP embeddings.
|
||||||
|
You can index a directory of images and search them using text queries.
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
python -m apps.image_rag --image-dir ./my_images/ --query "a sunset over mountains"
|
||||||
|
python -m apps.image_rag --image-dir ./my_images/ --interactive
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import pickle
|
||||||
|
import tempfile
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from PIL import Image
|
||||||
|
from sentence_transformers import SentenceTransformer
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from apps.base_rag_example import BaseRAGExample
|
||||||
|
|
||||||
|
|
||||||
|
class ImageRAG(BaseRAGExample):
|
||||||
|
"""
|
||||||
|
RAG application for images using CLIP embeddings.
|
||||||
|
|
||||||
|
This class provides a complete RAG pipeline for image data, including
|
||||||
|
CLIP embedding generation, indexing, and text-based image search.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__(
|
||||||
|
name="Image RAG",
|
||||||
|
description="RAG application for images using CLIP embeddings",
|
||||||
|
default_index_name="image_index",
|
||||||
|
)
|
||||||
|
# Override default embedding model to use CLIP
|
||||||
|
self.embedding_model_default = "clip-ViT-L-14"
|
||||||
|
self.embedding_mode_default = "sentence-transformers"
|
||||||
|
self._image_data: list[dict] = []
|
||||||
|
|
||||||
|
def _add_specific_arguments(self, parser: argparse.ArgumentParser):
|
||||||
|
"""Add image-specific arguments."""
|
||||||
|
image_group = parser.add_argument_group("Image Parameters")
|
||||||
|
image_group.add_argument(
|
||||||
|
"--image-dir",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Directory containing images to index",
|
||||||
|
)
|
||||||
|
image_group.add_argument(
|
||||||
|
"--image-extensions",
|
||||||
|
type=str,
|
||||||
|
nargs="+",
|
||||||
|
default=[".jpg", ".jpeg", ".png", ".gif", ".bmp", ".webp"],
|
||||||
|
help="Image file extensions to process (default: .jpg .jpeg .png .gif .bmp .webp)",
|
||||||
|
)
|
||||||
|
image_group.add_argument(
|
||||||
|
"--batch-size",
|
||||||
|
type=int,
|
||||||
|
default=32,
|
||||||
|
help="Batch size for CLIP embedding generation (default: 32)",
|
||||||
|
)
|
||||||
|
|
||||||
|
async def load_data(self, args) -> list[dict[str, Any]]:
|
||||||
|
"""Load images, generate CLIP embeddings, and return text descriptions."""
|
||||||
|
self._image_data = self._load_images_and_embeddings(args)
|
||||||
|
return [entry["text"] for entry in self._image_data]
|
||||||
|
|
||||||
|
def _load_images_and_embeddings(self, args) -> list[dict]:
|
||||||
|
"""Helper to process images and produce embeddings/metadata."""
|
||||||
|
image_dir = Path(args.image_dir)
|
||||||
|
if not image_dir.exists():
|
||||||
|
raise ValueError(f"Image directory does not exist: {image_dir}")
|
||||||
|
|
||||||
|
print(f"📸 Loading images from {image_dir}...")
|
||||||
|
|
||||||
|
# Find all image files
|
||||||
|
image_files = []
|
||||||
|
for ext in args.image_extensions:
|
||||||
|
image_files.extend(image_dir.rglob(f"*{ext}"))
|
||||||
|
image_files.extend(image_dir.rglob(f"*{ext.upper()}"))
|
||||||
|
|
||||||
|
if not image_files:
|
||||||
|
raise ValueError(
|
||||||
|
f"No images found in {image_dir} with extensions {args.image_extensions}"
|
||||||
|
)
|
||||||
|
|
||||||
|
print(f"✅ Found {len(image_files)} images")
|
||||||
|
|
||||||
|
# Limit if max_items is set
|
||||||
|
if args.max_items > 0:
|
||||||
|
image_files = image_files[: args.max_items]
|
||||||
|
print(f"📊 Processing {len(image_files)} images (limited by --max-items)")
|
||||||
|
|
||||||
|
# Load CLIP model
|
||||||
|
print("🔍 Loading CLIP model...")
|
||||||
|
model = SentenceTransformer(self.embedding_model_default)
|
||||||
|
|
||||||
|
# Process images and generate embeddings
|
||||||
|
print("🖼️ Processing images and generating embeddings...")
|
||||||
|
image_data = []
|
||||||
|
batch_images = []
|
||||||
|
batch_paths = []
|
||||||
|
|
||||||
|
for image_path in tqdm(image_files, desc="Processing images"):
|
||||||
|
try:
|
||||||
|
image = Image.open(image_path).convert("RGB")
|
||||||
|
batch_images.append(image)
|
||||||
|
batch_paths.append(image_path)
|
||||||
|
|
||||||
|
# Process in batches
|
||||||
|
if len(batch_images) >= args.batch_size:
|
||||||
|
embeddings = model.encode(
|
||||||
|
batch_images,
|
||||||
|
convert_to_numpy=True,
|
||||||
|
normalize_embeddings=True,
|
||||||
|
batch_size=args.batch_size,
|
||||||
|
show_progress_bar=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
for img_path, embedding in zip(batch_paths, embeddings):
|
||||||
|
image_data.append(
|
||||||
|
{
|
||||||
|
"text": f"Image: {img_path.name}\nPath: {img_path}",
|
||||||
|
"metadata": {
|
||||||
|
"image_path": str(img_path),
|
||||||
|
"image_name": img_path.name,
|
||||||
|
"image_dir": str(image_dir),
|
||||||
|
},
|
||||||
|
"embedding": embedding.astype(np.float32),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
batch_images = []
|
||||||
|
batch_paths = []
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"⚠️ Failed to process {image_path}: {e}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Process remaining images
|
||||||
|
if batch_images:
|
||||||
|
embeddings = model.encode(
|
||||||
|
batch_images,
|
||||||
|
convert_to_numpy=True,
|
||||||
|
normalize_embeddings=True,
|
||||||
|
batch_size=len(batch_images),
|
||||||
|
show_progress_bar=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
for img_path, embedding in zip(batch_paths, embeddings):
|
||||||
|
image_data.append(
|
||||||
|
{
|
||||||
|
"text": f"Image: {img_path.name}\nPath: {img_path}",
|
||||||
|
"metadata": {
|
||||||
|
"image_path": str(img_path),
|
||||||
|
"image_name": img_path.name,
|
||||||
|
"image_dir": str(image_dir),
|
||||||
|
},
|
||||||
|
"embedding": embedding.astype(np.float32),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
print(f"✅ Processed {len(image_data)} images")
|
||||||
|
return image_data
|
||||||
|
|
||||||
|
async def build_index(self, args, texts: list[dict[str, Any]]) -> str:
|
||||||
|
"""Build index using pre-computed CLIP embeddings."""
|
||||||
|
from leann.api import LeannBuilder
|
||||||
|
|
||||||
|
if not self._image_data or len(self._image_data) != len(texts):
|
||||||
|
raise RuntimeError("No image data found. Make sure load_data() ran successfully.")
|
||||||
|
|
||||||
|
print("🔨 Building LEANN index with CLIP embeddings...")
|
||||||
|
builder = LeannBuilder(
|
||||||
|
backend_name=args.backend_name,
|
||||||
|
embedding_model=self.embedding_model_default,
|
||||||
|
embedding_mode=self.embedding_mode_default,
|
||||||
|
is_recompute=False,
|
||||||
|
distance_metric="cosine",
|
||||||
|
graph_degree=args.graph_degree,
|
||||||
|
build_complexity=args.build_complexity,
|
||||||
|
is_compact=not args.no_compact,
|
||||||
|
)
|
||||||
|
|
||||||
|
for text, data in zip(texts, self._image_data):
|
||||||
|
builder.add_text(text=text, metadata=data["metadata"])
|
||||||
|
|
||||||
|
ids = [str(i) for i in range(len(self._image_data))]
|
||||||
|
embeddings = np.array([data["embedding"] for data in self._image_data], dtype=np.float32)
|
||||||
|
|
||||||
|
with tempfile.NamedTemporaryFile(mode="wb", suffix=".pkl", delete=False) as f:
|
||||||
|
pickle.dump((ids, embeddings), f)
|
||||||
|
pkl_path = f.name
|
||||||
|
|
||||||
|
try:
|
||||||
|
index_path = str(Path(args.index_dir) / f"{self.default_index_name}.leann")
|
||||||
|
builder.build_index_from_embeddings(index_path, pkl_path)
|
||||||
|
print(f"✅ Index built successfully at {index_path}")
|
||||||
|
return index_path
|
||||||
|
finally:
|
||||||
|
Path(pkl_path).unlink()
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
"""Main entry point for the image RAG application."""
|
||||||
|
import asyncio
|
||||||
|
|
||||||
|
app = ImageRAG()
|
||||||
|
asyncio.run(app.run())
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
@@ -6,6 +6,7 @@ This example demonstrates how to build a RAG system on your iMessage conversatio
|
|||||||
|
|
||||||
import asyncio
|
import asyncio
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
from leann.chunking_utils import create_text_chunks
|
from leann.chunking_utils import create_text_chunks
|
||||||
|
|
||||||
@@ -56,7 +57,7 @@ class IMessageRAG(BaseRAGExample):
|
|||||||
help="Overlap between text chunks (default: 200)",
|
help="Overlap between text chunks (default: 200)",
|
||||||
)
|
)
|
||||||
|
|
||||||
async def load_data(self, args) -> list[str]:
|
async def load_data(self, args) -> list[dict[str, Any]]:
|
||||||
"""Load iMessage history and convert to text chunks."""
|
"""Load iMessage history and convert to text chunks."""
|
||||||
print("Loading iMessage conversation history...")
|
print("Loading iMessage conversation history...")
|
||||||
|
|
||||||
|
|||||||
@@ -18,10 +18,11 @@ _repo_root = Path(__file__).resolve().parents[3]
|
|||||||
_leann_core_src = _repo_root / "packages" / "leann-core" / "src"
|
_leann_core_src = _repo_root / "packages" / "leann-core" / "src"
|
||||||
_leann_hnsw_pkg = _repo_root / "packages" / "leann-backend-hnsw"
|
_leann_hnsw_pkg = _repo_root / "packages" / "leann-backend-hnsw"
|
||||||
if str(_leann_core_src) not in sys.path:
|
if str(_leann_core_src) not in sys.path:
|
||||||
sys.path.append(str(_leann_core_src))
|
sys.path.insert(0, str(_leann_core_src))
|
||||||
if str(_leann_hnsw_pkg) not in sys.path:
|
if str(_leann_hnsw_pkg) not in sys.path:
|
||||||
sys.path.append(str(_leann_hnsw_pkg))
|
sys.path.insert(0, str(_leann_hnsw_pkg))
|
||||||
|
|
||||||
|
from leann_multi_vector import LeannMultiVector
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from colpali_engine.models import ColPali
|
from colpali_engine.models import ColPali
|
||||||
@@ -93,9 +94,9 @@ for batch_doc in tqdm(dataloader):
|
|||||||
print(ds[0].shape)
|
print(ds[0].shape)
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
# Build HNSW index via LeannRetriever primitives and run search
|
# Build HNSW index via LeannMultiVector primitives and run search
|
||||||
index_path = "./indexes/colpali.leann"
|
index_path = "./indexes/colpali.leann"
|
||||||
retriever = LeannRetriever(index_path=index_path, dim=int(ds[0].shape[-1]))
|
retriever = LeannMultiVector(index_path=index_path, dim=int(ds[0].shape[-1]))
|
||||||
retriever.create_collection()
|
retriever.create_collection()
|
||||||
filepaths = [os.path.join("./pages", name) for name in page_filenames]
|
filepaths = [os.path.join("./pages", name) for name in page_filenames]
|
||||||
for i in range(len(filepaths)):
|
for i in range(len(filepaths)):
|
||||||
|
|||||||
@@ -5,7 +5,7 @@ import argparse
|
|||||||
import faulthandler
|
import faulthandler
|
||||||
import os
|
import os
|
||||||
import time
|
import time
|
||||||
from typing import Any, Optional
|
from typing import Any, Optional, cast
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
@@ -223,7 +223,7 @@ if need_to_build_index:
|
|||||||
# Use filenames as identifiers instead of full paths for cleaner metadata
|
# Use filenames as identifiers instead of full paths for cleaner metadata
|
||||||
filepaths = [os.path.basename(fp) for fp in filepaths]
|
filepaths = [os.path.basename(fp) for fp in filepaths]
|
||||||
elif USE_HF_DATASET:
|
elif USE_HF_DATASET:
|
||||||
from datasets import load_dataset, concatenate_datasets, DatasetDict
|
from datasets import Dataset, DatasetDict, concatenate_datasets, load_dataset
|
||||||
|
|
||||||
# Determine which datasets to load
|
# Determine which datasets to load
|
||||||
if DATASET_NAMES is not None:
|
if DATASET_NAMES is not None:
|
||||||
@@ -281,12 +281,12 @@ if need_to_build_index:
|
|||||||
splits_to_load = DATASET_SPLITS
|
splits_to_load = DATASET_SPLITS
|
||||||
|
|
||||||
# Load and concatenate multiple splits for this dataset
|
# Load and concatenate multiple splits for this dataset
|
||||||
datasets_to_concat = []
|
datasets_to_concat: list[Dataset] = []
|
||||||
for split in splits_to_load:
|
for split in splits_to_load:
|
||||||
if split not in dataset_dict:
|
if split not in dataset_dict:
|
||||||
print(f" Warning: Split '{split}' not found in dataset. Available splits: {list(dataset_dict.keys())}")
|
print(f" Warning: Split '{split}' not found in dataset. Available splits: {list(dataset_dict.keys())}")
|
||||||
continue
|
continue
|
||||||
split_dataset = dataset_dict[split]
|
split_dataset = cast(Dataset, dataset_dict[split])
|
||||||
print(f" Loaded split '{split}': {len(split_dataset)} pages")
|
print(f" Loaded split '{split}': {len(split_dataset)} pages")
|
||||||
datasets_to_concat.append(split_dataset)
|
datasets_to_concat.append(split_dataset)
|
||||||
|
|
||||||
|
|||||||
@@ -25,9 +25,9 @@ Usage:
|
|||||||
import argparse
|
import argparse
|
||||||
import json
|
import json
|
||||||
import os
|
import os
|
||||||
from typing import Optional
|
from typing import Any, Optional, cast
|
||||||
|
|
||||||
from datasets import load_dataset
|
from datasets import Dataset, load_dataset
|
||||||
from leann_multi_vector import (
|
from leann_multi_vector import (
|
||||||
ViDoReBenchmarkEvaluator,
|
ViDoReBenchmarkEvaluator,
|
||||||
_ensure_repo_paths_importable,
|
_ensure_repo_paths_importable,
|
||||||
@@ -151,40 +151,43 @@ def load_vidore_v1_data(
|
|||||||
"""
|
"""
|
||||||
print(f"Loading dataset: {dataset_path} (split={split})")
|
print(f"Loading dataset: {dataset_path} (split={split})")
|
||||||
|
|
||||||
# Load queries
|
# Load queries - cast to Dataset since we know split returns Dataset not DatasetDict
|
||||||
query_ds = load_dataset(dataset_path, "queries", split=split, revision=revision)
|
query_ds = cast(Dataset, load_dataset(dataset_path, "queries", split=split, revision=revision))
|
||||||
|
|
||||||
queries = {}
|
queries: dict[str, str] = {}
|
||||||
for row in query_ds:
|
for row in query_ds:
|
||||||
query_id = f"query-{split}-{row['query-id']}"
|
row_dict = cast(dict[str, Any], row)
|
||||||
queries[query_id] = row["query"]
|
query_id = f"query-{split}-{row_dict['query-id']}"
|
||||||
|
queries[query_id] = row_dict["query"]
|
||||||
|
|
||||||
# Load corpus (images)
|
# Load corpus (images) - cast to Dataset
|
||||||
corpus_ds = load_dataset(dataset_path, "corpus", split=split, revision=revision)
|
corpus_ds = cast(Dataset, load_dataset(dataset_path, "corpus", split=split, revision=revision))
|
||||||
|
|
||||||
corpus = {}
|
corpus: dict[str, Any] = {}
|
||||||
for row in corpus_ds:
|
for row in corpus_ds:
|
||||||
corpus_id = f"corpus-{split}-{row['corpus-id']}"
|
row_dict = cast(dict[str, Any], row)
|
||||||
|
corpus_id = f"corpus-{split}-{row_dict['corpus-id']}"
|
||||||
# Extract image from the dataset row
|
# Extract image from the dataset row
|
||||||
if "image" in row:
|
if "image" in row_dict:
|
||||||
corpus[corpus_id] = row["image"]
|
corpus[corpus_id] = row_dict["image"]
|
||||||
elif "page_image" in row:
|
elif "page_image" in row_dict:
|
||||||
corpus[corpus_id] = row["page_image"]
|
corpus[corpus_id] = row_dict["page_image"]
|
||||||
else:
|
else:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"No image field found in corpus. Available fields: {list(row.keys())}"
|
f"No image field found in corpus. Available fields: {list(row_dict.keys())}"
|
||||||
)
|
)
|
||||||
|
|
||||||
# Load qrels (relevance judgments)
|
# Load qrels (relevance judgments) - cast to Dataset
|
||||||
qrels_ds = load_dataset(dataset_path, "qrels", split=split, revision=revision)
|
qrels_ds = cast(Dataset, load_dataset(dataset_path, "qrels", split=split, revision=revision))
|
||||||
|
|
||||||
qrels = {}
|
qrels: dict[str, dict[str, int]] = {}
|
||||||
for row in qrels_ds:
|
for row in qrels_ds:
|
||||||
query_id = f"query-{split}-{row['query-id']}"
|
row_dict = cast(dict[str, Any], row)
|
||||||
corpus_id = f"corpus-{split}-{row['corpus-id']}"
|
query_id = f"query-{split}-{row_dict['query-id']}"
|
||||||
|
corpus_id = f"corpus-{split}-{row_dict['corpus-id']}"
|
||||||
if query_id not in qrels:
|
if query_id not in qrels:
|
||||||
qrels[query_id] = {}
|
qrels[query_id] = {}
|
||||||
qrels[query_id][corpus_id] = int(row["score"])
|
qrels[query_id][corpus_id] = int(row_dict["score"])
|
||||||
|
|
||||||
print(
|
print(
|
||||||
f"Loaded {len(queries)} queries, {len(corpus)} corpus items, {len(qrels)} query-relevance mappings"
|
f"Loaded {len(queries)} queries, {len(corpus)} corpus items, {len(qrels)} query-relevance mappings"
|
||||||
@@ -234,8 +237,8 @@ def evaluate_task(
|
|||||||
raise ValueError(f"Unknown task: {task_name}. Available: {list(VIDORE_V1_TASKS.keys())}")
|
raise ValueError(f"Unknown task: {task_name}. Available: {list(VIDORE_V1_TASKS.keys())}")
|
||||||
|
|
||||||
task_config = VIDORE_V1_TASKS[task_name]
|
task_config = VIDORE_V1_TASKS[task_name]
|
||||||
dataset_path = task_config["dataset_path"]
|
dataset_path = str(task_config["dataset_path"])
|
||||||
revision = task_config["revision"]
|
revision = str(task_config["revision"])
|
||||||
|
|
||||||
# Load data
|
# Load data
|
||||||
corpus, queries, qrels = load_vidore_v1_data(
|
corpus, queries, qrels = load_vidore_v1_data(
|
||||||
@@ -286,7 +289,7 @@ def evaluate_task(
|
|||||||
)
|
)
|
||||||
|
|
||||||
# Search queries
|
# Search queries
|
||||||
task_prompt = task_config.get("prompt")
|
task_prompt = cast(Optional[dict[str, str]], task_config.get("prompt"))
|
||||||
results = evaluator.search_queries(
|
results = evaluator.search_queries(
|
||||||
queries=queries,
|
queries=queries,
|
||||||
corpus_ids=corpus_ids_ordered,
|
corpus_ids=corpus_ids_ordered,
|
||||||
|
|||||||
@@ -25,9 +25,9 @@ Usage:
|
|||||||
import argparse
|
import argparse
|
||||||
import json
|
import json
|
||||||
import os
|
import os
|
||||||
from typing import Optional
|
from typing import Any, Optional, cast
|
||||||
|
|
||||||
from datasets import load_dataset
|
from datasets import Dataset, load_dataset
|
||||||
from leann_multi_vector import (
|
from leann_multi_vector import (
|
||||||
ViDoReBenchmarkEvaluator,
|
ViDoReBenchmarkEvaluator,
|
||||||
_ensure_repo_paths_importable,
|
_ensure_repo_paths_importable,
|
||||||
@@ -91,8 +91,8 @@ def load_vidore_v2_data(
|
|||||||
"""
|
"""
|
||||||
print(f"Loading dataset: {dataset_path} (split={split}, language={language})")
|
print(f"Loading dataset: {dataset_path} (split={split}, language={language})")
|
||||||
|
|
||||||
# Load queries
|
# Load queries - cast to Dataset since we know split returns Dataset not DatasetDict
|
||||||
query_ds = load_dataset(dataset_path, "queries", split=split, revision=revision)
|
query_ds = cast(Dataset, load_dataset(dataset_path, "queries", split=split, revision=revision))
|
||||||
|
|
||||||
# Check if dataset has language field before filtering
|
# Check if dataset has language field before filtering
|
||||||
has_language_field = len(query_ds) > 0 and "language" in query_ds.column_names
|
has_language_field = len(query_ds) > 0 and "language" in query_ds.column_names
|
||||||
@@ -112,8 +112,9 @@ def load_vidore_v2_data(
|
|||||||
if len(query_ds_filtered) == 0:
|
if len(query_ds_filtered) == 0:
|
||||||
# Try to get a sample to see actual language values
|
# Try to get a sample to see actual language values
|
||||||
try:
|
try:
|
||||||
sample_ds = load_dataset(
|
sample_ds = cast(
|
||||||
dataset_path, "queries", split=split, revision=revision
|
Dataset,
|
||||||
|
load_dataset(dataset_path, "queries", split=split, revision=revision),
|
||||||
)
|
)
|
||||||
if len(sample_ds) > 0 and "language" in sample_ds.column_names:
|
if len(sample_ds) > 0 and "language" in sample_ds.column_names:
|
||||||
sample_langs = set(sample_ds["language"])
|
sample_langs = set(sample_ds["language"])
|
||||||
@@ -126,37 +127,40 @@ def load_vidore_v2_data(
|
|||||||
)
|
)
|
||||||
query_ds = query_ds_filtered
|
query_ds = query_ds_filtered
|
||||||
|
|
||||||
queries = {}
|
queries: dict[str, str] = {}
|
||||||
for row in query_ds:
|
for row in query_ds:
|
||||||
query_id = f"query-{split}-{row['query-id']}"
|
row_dict = cast(dict[str, Any], row)
|
||||||
queries[query_id] = row["query"]
|
query_id = f"query-{split}-{row_dict['query-id']}"
|
||||||
|
queries[query_id] = row_dict["query"]
|
||||||
|
|
||||||
# Load corpus (images)
|
# Load corpus (images) - cast to Dataset
|
||||||
corpus_ds = load_dataset(dataset_path, "corpus", split=split, revision=revision)
|
corpus_ds = cast(Dataset, load_dataset(dataset_path, "corpus", split=split, revision=revision))
|
||||||
|
|
||||||
corpus = {}
|
corpus: dict[str, Any] = {}
|
||||||
for row in corpus_ds:
|
for row in corpus_ds:
|
||||||
corpus_id = f"corpus-{split}-{row['corpus-id']}"
|
row_dict = cast(dict[str, Any], row)
|
||||||
|
corpus_id = f"corpus-{split}-{row_dict['corpus-id']}"
|
||||||
# Extract image from the dataset row
|
# Extract image from the dataset row
|
||||||
if "image" in row:
|
if "image" in row_dict:
|
||||||
corpus[corpus_id] = row["image"]
|
corpus[corpus_id] = row_dict["image"]
|
||||||
elif "page_image" in row:
|
elif "page_image" in row_dict:
|
||||||
corpus[corpus_id] = row["page_image"]
|
corpus[corpus_id] = row_dict["page_image"]
|
||||||
else:
|
else:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"No image field found in corpus. Available fields: {list(row.keys())}"
|
f"No image field found in corpus. Available fields: {list(row_dict.keys())}"
|
||||||
)
|
)
|
||||||
|
|
||||||
# Load qrels (relevance judgments)
|
# Load qrels (relevance judgments) - cast to Dataset
|
||||||
qrels_ds = load_dataset(dataset_path, "qrels", split=split, revision=revision)
|
qrels_ds = cast(Dataset, load_dataset(dataset_path, "qrels", split=split, revision=revision))
|
||||||
|
|
||||||
qrels = {}
|
qrels: dict[str, dict[str, int]] = {}
|
||||||
for row in qrels_ds:
|
for row in qrels_ds:
|
||||||
query_id = f"query-{split}-{row['query-id']}"
|
row_dict = cast(dict[str, Any], row)
|
||||||
corpus_id = f"corpus-{split}-{row['corpus-id']}"
|
query_id = f"query-{split}-{row_dict['query-id']}"
|
||||||
|
corpus_id = f"corpus-{split}-{row_dict['corpus-id']}"
|
||||||
if query_id not in qrels:
|
if query_id not in qrels:
|
||||||
qrels[query_id] = {}
|
qrels[query_id] = {}
|
||||||
qrels[query_id][corpus_id] = int(row["score"])
|
qrels[query_id][corpus_id] = int(row_dict["score"])
|
||||||
|
|
||||||
print(
|
print(
|
||||||
f"Loaded {len(queries)} queries, {len(corpus)} corpus items, {len(qrels)} query-relevance mappings"
|
f"Loaded {len(queries)} queries, {len(corpus)} corpus items, {len(qrels)} query-relevance mappings"
|
||||||
@@ -204,13 +208,13 @@ def evaluate_task(
|
|||||||
raise ValueError(f"Unknown task: {task_name}. Available: {list(VIDORE_V2_TASKS.keys())}")
|
raise ValueError(f"Unknown task: {task_name}. Available: {list(VIDORE_V2_TASKS.keys())}")
|
||||||
|
|
||||||
task_config = VIDORE_V2_TASKS[task_name]
|
task_config = VIDORE_V2_TASKS[task_name]
|
||||||
dataset_path = task_config["dataset_path"]
|
dataset_path = str(task_config["dataset_path"])
|
||||||
revision = task_config["revision"]
|
revision = str(task_config["revision"])
|
||||||
|
|
||||||
# Determine language
|
# Determine language
|
||||||
if language is None:
|
if language is None:
|
||||||
# Use first language if multiple available
|
# Use first language if multiple available
|
||||||
languages = task_config.get("languages")
|
languages = cast(Optional[list[str]], task_config.get("languages"))
|
||||||
if languages is None:
|
if languages is None:
|
||||||
# Task doesn't support language filtering (e.g., Vidore2ESGReportsHLRetrieval)
|
# Task doesn't support language filtering (e.g., Vidore2ESGReportsHLRetrieval)
|
||||||
language = None
|
language = None
|
||||||
@@ -269,7 +273,7 @@ def evaluate_task(
|
|||||||
)
|
)
|
||||||
|
|
||||||
# Search queries
|
# Search queries
|
||||||
task_prompt = task_config.get("prompt")
|
task_prompt = cast(Optional[dict[str, str]], task_config.get("prompt"))
|
||||||
results = evaluator.search_queries(
|
results = evaluator.search_queries(
|
||||||
queries=queries,
|
queries=queries,
|
||||||
corpus_ids=corpus_ids_ordered,
|
corpus_ids=corpus_ids_ordered,
|
||||||
|
|||||||
@@ -177,7 +177,9 @@ class SlackMCPReader:
|
|||||||
break
|
break
|
||||||
|
|
||||||
# If we get here, all retries failed or it's not a retryable error
|
# If we get here, all retries failed or it's not a retryable error
|
||||||
|
if last_exception is not None:
|
||||||
raise last_exception
|
raise last_exception
|
||||||
|
raise RuntimeError("Unexpected error: no exception captured during retry loop")
|
||||||
|
|
||||||
async def fetch_slack_messages(
|
async def fetch_slack_messages(
|
||||||
self, channel: Optional[str] = None, limit: int = 100
|
self, channel: Optional[str] = None, limit: int = 100
|
||||||
@@ -267,7 +269,10 @@ class SlackMCPReader:
|
|||||||
messages = json.loads(content["text"])
|
messages = json.loads(content["text"])
|
||||||
except json.JSONDecodeError:
|
except json.JSONDecodeError:
|
||||||
# If not JSON, try to parse as CSV format (Slack MCP server format)
|
# If not JSON, try to parse as CSV format (Slack MCP server format)
|
||||||
messages = self._parse_csv_messages(content["text"], channel)
|
text_content = content.get("text", "")
|
||||||
|
messages = self._parse_csv_messages(
|
||||||
|
text_content if text_content else "", channel or "unknown"
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
messages = result["content"]
|
messages = result["content"]
|
||||||
else:
|
else:
|
||||||
|
|||||||
@@ -11,6 +11,7 @@ Usage:
|
|||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import asyncio
|
import asyncio
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
from apps.base_rag_example import BaseRAGExample
|
from apps.base_rag_example import BaseRAGExample
|
||||||
from apps.slack_data.slack_mcp_reader import SlackMCPReader
|
from apps.slack_data.slack_mcp_reader import SlackMCPReader
|
||||||
@@ -139,7 +140,7 @@ class SlackMCPRAG(BaseRAGExample):
|
|||||||
print("4. Try running the MCP server command directly to test it")
|
print("4. Try running the MCP server command directly to test it")
|
||||||
return False
|
return False
|
||||||
|
|
||||||
async def load_data(self, args) -> list[str]:
|
async def load_data(self, args) -> list[dict[str, Any]]:
|
||||||
"""Load Slack messages via MCP server."""
|
"""Load Slack messages via MCP server."""
|
||||||
print(f"Connecting to Slack MCP server: {args.mcp_server}")
|
print(f"Connecting to Slack MCP server: {args.mcp_server}")
|
||||||
|
|
||||||
@@ -188,7 +189,8 @@ class SlackMCPRAG(BaseRAGExample):
|
|||||||
print(sample_text)
|
print(sample_text)
|
||||||
print("-" * 40)
|
print("-" * 40)
|
||||||
|
|
||||||
return texts
|
# Convert strings to dict format expected by base class
|
||||||
|
return [{"text": text, "metadata": {"source": "slack"}} for text in texts]
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"Error loading Slack data: {e}")
|
print(f"Error loading Slack data: {e}")
|
||||||
|
|||||||
@@ -11,6 +11,7 @@ Usage:
|
|||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import asyncio
|
import asyncio
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
from apps.base_rag_example import BaseRAGExample
|
from apps.base_rag_example import BaseRAGExample
|
||||||
from apps.twitter_data.twitter_mcp_reader import TwitterMCPReader
|
from apps.twitter_data.twitter_mcp_reader import TwitterMCPReader
|
||||||
@@ -116,7 +117,7 @@ class TwitterMCPRAG(BaseRAGExample):
|
|||||||
print("5. Try running the MCP server command directly to test it")
|
print("5. Try running the MCP server command directly to test it")
|
||||||
return False
|
return False
|
||||||
|
|
||||||
async def load_data(self, args) -> list[str]:
|
async def load_data(self, args) -> list[dict[str, Any]]:
|
||||||
"""Load Twitter bookmarks via MCP server."""
|
"""Load Twitter bookmarks via MCP server."""
|
||||||
print(f"Connecting to Twitter MCP server: {args.mcp_server}")
|
print(f"Connecting to Twitter MCP server: {args.mcp_server}")
|
||||||
|
|
||||||
@@ -156,7 +157,8 @@ class TwitterMCPRAG(BaseRAGExample):
|
|||||||
print(sample_text)
|
print(sample_text)
|
||||||
print("-" * 50)
|
print("-" * 50)
|
||||||
|
|
||||||
return texts
|
# Convert strings to dict format expected by base class
|
||||||
|
return [{"text": text, "metadata": {"source": "twitter"}} for text in texts]
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"❌ Error loading Twitter bookmarks: {e}")
|
print(f"❌ Error loading Twitter bookmarks: {e}")
|
||||||
|
|||||||
@@ -6,6 +6,7 @@ Supports WeChat chat history export and search.
|
|||||||
import subprocess
|
import subprocess
|
||||||
import sys
|
import sys
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
# Add parent directory to path for imports
|
# Add parent directory to path for imports
|
||||||
sys.path.insert(0, str(Path(__file__).parent))
|
sys.path.insert(0, str(Path(__file__).parent))
|
||||||
@@ -91,7 +92,7 @@ class WeChatRAG(BaseRAGExample):
|
|||||||
print(f"Export error: {e}")
|
print(f"Export error: {e}")
|
||||||
return False
|
return False
|
||||||
|
|
||||||
async def load_data(self, args) -> list[str]:
|
async def load_data(self, args) -> list[dict[str, Any]]:
|
||||||
"""Load WeChat history and convert to text chunks."""
|
"""Load WeChat history and convert to text chunks."""
|
||||||
# Initialize WeChat reader with export capabilities
|
# Initialize WeChat reader with export capabilities
|
||||||
reader = WeChatHistoryReader()
|
reader = WeChatHistoryReader()
|
||||||
|
|||||||
200
docs/COLQWEN_GUIDE.md
Normal file
200
docs/COLQWEN_GUIDE.md
Normal file
@@ -0,0 +1,200 @@
|
|||||||
|
# ColQwen Integration Guide
|
||||||
|
|
||||||
|
Easy-to-use multimodal PDF retrieval with ColQwen2/ColPali models.
|
||||||
|
|
||||||
|
## Quick Start
|
||||||
|
|
||||||
|
> **🍎 Mac Users**: ColQwen is optimized for Apple Silicon with MPS acceleration for faster inference!
|
||||||
|
|
||||||
|
### 1. Install Dependencies
|
||||||
|
```bash
|
||||||
|
uv pip install colpali_engine pdf2image pillow matplotlib qwen_vl_utils einops seaborn
|
||||||
|
brew install poppler # macOS only, for PDF processing
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Basic Usage
|
||||||
|
```bash
|
||||||
|
# Build index from PDFs
|
||||||
|
python -m apps.colqwen_rag build --pdfs ./my_papers/ --index research_papers
|
||||||
|
|
||||||
|
# Search with text queries
|
||||||
|
python -m apps.colqwen_rag search research_papers "How does attention mechanism work?"
|
||||||
|
|
||||||
|
# Interactive Q&A
|
||||||
|
python -m apps.colqwen_rag ask research_papers --interactive
|
||||||
|
```
|
||||||
|
|
||||||
|
## Commands
|
||||||
|
|
||||||
|
### Build Index
|
||||||
|
```bash
|
||||||
|
python -m apps.colqwen_rag build \
|
||||||
|
--pdfs ./pdf_directory/ \
|
||||||
|
--index my_index \
|
||||||
|
--model colqwen2 \
|
||||||
|
--pages-dir ./page_images/ # Optional: save page images
|
||||||
|
```
|
||||||
|
|
||||||
|
**Options:**
|
||||||
|
- `--pdfs`: Directory containing PDF files (or single PDF path)
|
||||||
|
- `--index`: Name for the index (required)
|
||||||
|
- `--model`: `colqwen2` (default) or `colpali`
|
||||||
|
- `--pages-dir`: Directory to save page images (optional)
|
||||||
|
|
||||||
|
### Search Index
|
||||||
|
```bash
|
||||||
|
python -m apps.colqwen_rag search my_index "your question here" --top-k 5
|
||||||
|
```
|
||||||
|
|
||||||
|
**Options:**
|
||||||
|
- `--top-k`: Number of results to return (default: 5)
|
||||||
|
- `--model`: Model used for search (should match build model)
|
||||||
|
|
||||||
|
### Interactive Q&A
|
||||||
|
```bash
|
||||||
|
python -m apps.colqwen_rag ask my_index --interactive
|
||||||
|
```
|
||||||
|
|
||||||
|
**Commands in interactive mode:**
|
||||||
|
- Type your questions naturally
|
||||||
|
- `help`: Show available commands
|
||||||
|
- `quit`/`exit`/`q`: Exit interactive mode
|
||||||
|
|
||||||
|
## 🧪 Test & Reproduce Results
|
||||||
|
|
||||||
|
Run the reproduction test for issue #119:
|
||||||
|
```bash
|
||||||
|
python test_colqwen_reproduction.py
|
||||||
|
```
|
||||||
|
|
||||||
|
This will:
|
||||||
|
1. ✅ Check dependencies
|
||||||
|
2. 📥 Download sample PDF (Attention Is All You Need paper)
|
||||||
|
3. 🏗️ Build test index
|
||||||
|
4. 🔍 Run sample queries
|
||||||
|
5. 📊 Show how to generate similarity maps
|
||||||
|
|
||||||
|
## 🎨 Advanced: Similarity Maps
|
||||||
|
|
||||||
|
For visual similarity analysis, use the existing advanced script:
|
||||||
|
```bash
|
||||||
|
cd apps/multimodal/vision-based-pdf-multi-vector/
|
||||||
|
python multi-vector-leann-similarity-map.py
|
||||||
|
```
|
||||||
|
|
||||||
|
Edit the script to customize:
|
||||||
|
- `QUERY`: Your question
|
||||||
|
- `MODEL`: "colqwen2" or "colpali"
|
||||||
|
- `USE_HF_DATASET`: Use HuggingFace dataset or local PDFs
|
||||||
|
- `SIMILARITY_MAP`: Generate heatmaps
|
||||||
|
- `ANSWER`: Enable Qwen-VL answer generation
|
||||||
|
|
||||||
|
## 🔧 How It Works
|
||||||
|
|
||||||
|
### ColQwen2 vs ColPali
|
||||||
|
- **ColQwen2** (`vidore/colqwen2-v1.0`): Latest vision-language model
|
||||||
|
- **ColPali** (`vidore/colpali-v1.2`): Proven multimodal retriever
|
||||||
|
|
||||||
|
### Architecture
|
||||||
|
1. **PDF → Images**: Convert PDF pages to images (150 DPI)
|
||||||
|
2. **Vision Encoding**: Process images with ColQwen2/ColPali
|
||||||
|
3. **Multi-Vector Index**: Build LEANN HNSW index with multiple embeddings per page
|
||||||
|
4. **Query Processing**: Encode text queries with same model
|
||||||
|
5. **Similarity Search**: Find most relevant pages/regions
|
||||||
|
6. **Visual Maps**: Generate attention heatmaps (optional)
|
||||||
|
|
||||||
|
### Device Support
|
||||||
|
- **CUDA**: Best performance with GPU acceleration
|
||||||
|
- **MPS**: Apple Silicon Mac support
|
||||||
|
- **CPU**: Fallback for any system (slower)
|
||||||
|
|
||||||
|
Auto-detection: CUDA > MPS > CPU
|
||||||
|
|
||||||
|
## 📊 Performance Tips
|
||||||
|
|
||||||
|
### For Best Performance:
|
||||||
|
```bash
|
||||||
|
# Use ColQwen2 for latest features
|
||||||
|
--model colqwen2
|
||||||
|
|
||||||
|
# Save page images for reuse
|
||||||
|
--pages-dir ./cached_pages/
|
||||||
|
|
||||||
|
# Adjust batch size based on GPU memory
|
||||||
|
# (automatically handled)
|
||||||
|
```
|
||||||
|
|
||||||
|
### For Large Document Sets:
|
||||||
|
- Process PDFs in batches
|
||||||
|
- Use SSD storage for index files
|
||||||
|
- Consider using CUDA if available
|
||||||
|
|
||||||
|
## 🔗 Related Resources
|
||||||
|
|
||||||
|
- **Fast-PLAID**: https://github.com/lightonai/fast-plaid
|
||||||
|
- **Pylate**: https://github.com/lightonai/pylate
|
||||||
|
- **ColBERT**: https://github.com/stanford-futuredata/ColBERT
|
||||||
|
- **ColPali Paper**: Vision-Language Models for Document Retrieval
|
||||||
|
- **Issue #119**: https://github.com/yichuan-w/LEANN/issues/119
|
||||||
|
|
||||||
|
## 🐛 Troubleshooting
|
||||||
|
|
||||||
|
### PDF Conversion Issues (macOS)
|
||||||
|
```bash
|
||||||
|
# Install poppler
|
||||||
|
brew install poppler
|
||||||
|
which pdfinfo && pdfinfo -v
|
||||||
|
```
|
||||||
|
|
||||||
|
### Memory Issues
|
||||||
|
- Reduce batch size (automatically handled)
|
||||||
|
- Use CPU instead of GPU: `export CUDA_VISIBLE_DEVICES=""`
|
||||||
|
- Process fewer PDFs at once
|
||||||
|
|
||||||
|
### Model Download Issues
|
||||||
|
- Ensure internet connection for first run
|
||||||
|
- Models are cached after first download
|
||||||
|
- Use HuggingFace mirrors if needed
|
||||||
|
|
||||||
|
### Import Errors
|
||||||
|
```bash
|
||||||
|
# Ensure all dependencies installed
|
||||||
|
uv pip install colpali_engine pdf2image pillow matplotlib qwen_vl_utils einops seaborn
|
||||||
|
|
||||||
|
# Check PyTorch installation
|
||||||
|
python -c "import torch; print(torch.__version__)"
|
||||||
|
```
|
||||||
|
|
||||||
|
## 💡 Examples
|
||||||
|
|
||||||
|
### Research Paper Analysis
|
||||||
|
```bash
|
||||||
|
# Index your research papers
|
||||||
|
python -m apps.colqwen_rag build --pdfs ~/Papers/AI/ --index ai_papers
|
||||||
|
|
||||||
|
# Ask research questions
|
||||||
|
python -m apps.colqwen_rag search ai_papers "What are the limitations of transformer models?"
|
||||||
|
python -m apps.colqwen_rag search ai_papers "How does BERT compare to GPT?"
|
||||||
|
```
|
||||||
|
|
||||||
|
### Document Q&A
|
||||||
|
```bash
|
||||||
|
# Index business documents
|
||||||
|
python -m apps.colqwen_rag build --pdfs ~/Documents/Reports/ --index reports
|
||||||
|
|
||||||
|
# Interactive analysis
|
||||||
|
python -m apps.colqwen_rag ask reports --interactive
|
||||||
|
```
|
||||||
|
|
||||||
|
### Visual Analysis
|
||||||
|
```bash
|
||||||
|
# Generate similarity maps for specific queries
|
||||||
|
cd apps/multimodal/vision-based-pdf-multi-vector/
|
||||||
|
# Edit multi-vector-leann-similarity-map.py with your query
|
||||||
|
python multi-vector-leann-similarity-map.py
|
||||||
|
# Check ./figures/ for generated heatmaps
|
||||||
|
```
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
**🎯 This integration makes ColQwen as easy to use as other LEANN features while maintaining the full power of multimodal document understanding!**
|
||||||
@@ -7,7 +7,7 @@ name = "leann-core"
|
|||||||
version = "0.3.5"
|
version = "0.3.5"
|
||||||
description = "Core API and plugin system for LEANN"
|
description = "Core API and plugin system for LEANN"
|
||||||
readme = "README.md"
|
readme = "README.md"
|
||||||
requires-python = ">=3.9"
|
requires-python = ">=3.10"
|
||||||
license = { text = "MIT" }
|
license = { text = "MIT" }
|
||||||
|
|
||||||
# All required dependencies included
|
# All required dependencies included
|
||||||
|
|||||||
@@ -239,11 +239,11 @@ def create_ast_chunks(
|
|||||||
|
|
||||||
chunks = chunk_builder.chunkify(code_content)
|
chunks = chunk_builder.chunkify(code_content)
|
||||||
for chunk in chunks:
|
for chunk in chunks:
|
||||||
chunk_text = None
|
chunk_text: str | None = None
|
||||||
astchunk_metadata = {}
|
astchunk_metadata: dict[str, Any] = {}
|
||||||
|
|
||||||
if hasattr(chunk, "text"):
|
if hasattr(chunk, "text"):
|
||||||
chunk_text = chunk.text
|
chunk_text = str(chunk.text) if chunk.text else None
|
||||||
elif isinstance(chunk, str):
|
elif isinstance(chunk, str):
|
||||||
chunk_text = chunk
|
chunk_text = chunk
|
||||||
elif isinstance(chunk, dict):
|
elif isinstance(chunk, dict):
|
||||||
|
|||||||
@@ -19,7 +19,7 @@ from .settings import (
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def extract_pdf_text_with_pymupdf(file_path: str) -> str:
|
def extract_pdf_text_with_pymupdf(file_path: str) -> str | None:
|
||||||
"""Extract text from PDF using PyMuPDF for better quality."""
|
"""Extract text from PDF using PyMuPDF for better quality."""
|
||||||
try:
|
try:
|
||||||
import fitz # PyMuPDF
|
import fitz # PyMuPDF
|
||||||
@@ -35,7 +35,7 @@ def extract_pdf_text_with_pymupdf(file_path: str) -> str:
|
|||||||
return None
|
return None
|
||||||
|
|
||||||
|
|
||||||
def extract_pdf_text_with_pdfplumber(file_path: str) -> str:
|
def extract_pdf_text_with_pdfplumber(file_path: str) -> str | None:
|
||||||
"""Extract text from PDF using pdfplumber for better quality."""
|
"""Extract text from PDF using pdfplumber for better quality."""
|
||||||
try:
|
try:
|
||||||
import pdfplumber
|
import pdfplumber
|
||||||
|
|||||||
@@ -451,7 +451,8 @@ def compute_embeddings_sentence_transformers(
|
|||||||
# TODO: Haven't tested this yet
|
# TODO: Haven't tested this yet
|
||||||
torch.set_num_threads(min(8, os.cpu_count() or 4))
|
torch.set_num_threads(min(8, os.cpu_count() or 4))
|
||||||
try:
|
try:
|
||||||
torch.backends.mkldnn.enabled = True
|
# PyTorch's ContextProp type is complex; cast for type checker
|
||||||
|
torch.backends.mkldnn.enabled = True # type: ignore[assignment]
|
||||||
except AttributeError:
|
except AttributeError:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|||||||
@@ -11,14 +11,15 @@ from pathlib import Path
|
|||||||
from typing import Callable, Optional
|
from typing import Callable, Optional
|
||||||
|
|
||||||
# Try to import readline with fallback for Windows
|
# Try to import readline with fallback for Windows
|
||||||
|
HAS_READLINE = False
|
||||||
|
readline = None # type: ignore[assignment]
|
||||||
try:
|
try:
|
||||||
import readline
|
import readline # type: ignore[no-redef]
|
||||||
|
|
||||||
HAS_READLINE = True
|
HAS_READLINE = True
|
||||||
except ImportError:
|
except ImportError:
|
||||||
# Windows doesn't have readline by default
|
# Windows doesn't have readline by default
|
||||||
HAS_READLINE = False
|
pass
|
||||||
readline = None
|
|
||||||
|
|
||||||
|
|
||||||
class InteractiveSession:
|
class InteractiveSession:
|
||||||
|
|||||||
@@ -7,7 +7,7 @@ operators for different data types including numbers, strings, booleans, and lis
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
import logging
|
import logging
|
||||||
from typing import Any, Union
|
from typing import Any, Optional, Union
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
@@ -47,7 +47,7 @@ class MetadataFilterEngine:
|
|||||||
}
|
}
|
||||||
|
|
||||||
def apply_filters(
|
def apply_filters(
|
||||||
self, search_results: list[dict[str, Any]], metadata_filters: MetadataFilters
|
self, search_results: list[dict[str, Any]], metadata_filters: Optional[MetadataFilters]
|
||||||
) -> list[dict[str, Any]]:
|
) -> list[dict[str, Any]]:
|
||||||
"""
|
"""
|
||||||
Apply metadata filters to a list of search results.
|
Apply metadata filters to a list of search results.
|
||||||
|
|||||||
@@ -56,7 +56,9 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
|
|||||||
with open(meta_path, encoding="utf-8") as f:
|
with open(meta_path, encoding="utf-8") as f:
|
||||||
return json.load(f)
|
return json.load(f)
|
||||||
|
|
||||||
def _ensure_server_running(self, passages_source_file: str, port: int, **kwargs) -> int:
|
def _ensure_server_running(
|
||||||
|
self, passages_source_file: str, port: Optional[int], **kwargs
|
||||||
|
) -> int:
|
||||||
"""
|
"""
|
||||||
Ensures the embedding server is running if recompute is needed.
|
Ensures the embedding server is running if recompute is needed.
|
||||||
This is a helper for subclasses.
|
This is a helper for subclasses.
|
||||||
@@ -81,7 +83,7 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
|
|||||||
}
|
}
|
||||||
|
|
||||||
server_started, actual_port = self.embedding_server_manager.start_server(
|
server_started, actual_port = self.embedding_server_manager.start_server(
|
||||||
port=port,
|
port=port if port is not None else 5557,
|
||||||
model_name=self.embedding_model,
|
model_name=self.embedding_model,
|
||||||
embedding_mode=self.embedding_mode,
|
embedding_mode=self.embedding_mode,
|
||||||
passages_file=passages_source_file,
|
passages_file=passages_source_file,
|
||||||
@@ -98,7 +100,7 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
|
|||||||
self,
|
self,
|
||||||
query: str,
|
query: str,
|
||||||
use_server_if_available: bool = True,
|
use_server_if_available: bool = True,
|
||||||
zmq_port: int = 5557,
|
zmq_port: Optional[int] = None,
|
||||||
query_template: Optional[str] = None,
|
query_template: Optional[str] = None,
|
||||||
) -> np.ndarray:
|
) -> np.ndarray:
|
||||||
"""
|
"""
|
||||||
|
|||||||
@@ -7,7 +7,7 @@ name = "leann"
|
|||||||
version = "0.3.5"
|
version = "0.3.5"
|
||||||
description = "LEANN - The smallest vector index in the world. RAG Everything with LEANN!"
|
description = "LEANN - The smallest vector index in the world. RAG Everything with LEANN!"
|
||||||
readme = "README.md"
|
readme = "README.md"
|
||||||
requires-python = ">=3.9"
|
requires-python = ">=3.10"
|
||||||
license = { text = "MIT" }
|
license = { text = "MIT" }
|
||||||
authors = [
|
authors = [
|
||||||
{ name = "LEANN Team" }
|
{ name = "LEANN Team" }
|
||||||
@@ -18,10 +18,10 @@ classifiers = [
|
|||||||
"Intended Audience :: Developers",
|
"Intended Audience :: Developers",
|
||||||
"License :: OSI Approved :: MIT License",
|
"License :: OSI Approved :: MIT License",
|
||||||
"Programming Language :: Python :: 3",
|
"Programming Language :: Python :: 3",
|
||||||
"Programming Language :: Python :: 3.9",
|
|
||||||
"Programming Language :: Python :: 3.10",
|
"Programming Language :: Python :: 3.10",
|
||||||
"Programming Language :: Python :: 3.11",
|
"Programming Language :: Python :: 3.11",
|
||||||
"Programming Language :: Python :: 3.12",
|
"Programming Language :: Python :: 3.12",
|
||||||
|
"Programming Language :: Python :: 3.13",
|
||||||
]
|
]
|
||||||
|
|
||||||
# Default installation: core + hnsw + diskann
|
# Default installation: core + hnsw + diskann
|
||||||
|
|||||||
@@ -5,7 +5,7 @@ build-backend = "setuptools.build_meta"
|
|||||||
[project]
|
[project]
|
||||||
name = "leann-workspace"
|
name = "leann-workspace"
|
||||||
version = "0.1.0"
|
version = "0.1.0"
|
||||||
requires-python = ">=3.9"
|
requires-python = ">=3.10"
|
||||||
|
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"leann-core",
|
"leann-core",
|
||||||
@@ -157,6 +157,19 @@ exclude = ["localhost", "127.0.0.1", "example.com"]
|
|||||||
exclude_path = [".git/", ".venv/", "__pycache__/", "third_party/"]
|
exclude_path = [".git/", ".venv/", "__pycache__/", "third_party/"]
|
||||||
scheme = ["https", "http"]
|
scheme = ["https", "http"]
|
||||||
|
|
||||||
|
[tool.ty]
|
||||||
|
# Type checking with ty (Astral's fast Python type checker)
|
||||||
|
# ty is 10-100x faster than mypy. See: https://docs.astral.sh/ty/
|
||||||
|
|
||||||
|
[tool.ty.environment]
|
||||||
|
python-version = "3.11"
|
||||||
|
extra-paths = ["apps", "packages/leann-core/src"]
|
||||||
|
|
||||||
|
[tool.ty.rules]
|
||||||
|
# Disable some noisy rules that have many false positives
|
||||||
|
possibly-missing-attribute = "ignore"
|
||||||
|
unresolved-import = "ignore" # Many optional dependencies
|
||||||
|
|
||||||
[tool.pytest.ini_options]
|
[tool.pytest.ini_options]
|
||||||
testpaths = ["tests"]
|
testpaths = ["tests"]
|
||||||
python_files = ["test_*.py"]
|
python_files = ["test_*.py"]
|
||||||
|
|||||||
@@ -91,7 +91,7 @@ def test_large_index():
|
|||||||
builder.build_index(index_path)
|
builder.build_index(index_path)
|
||||||
|
|
||||||
searcher = LeannSearcher(index_path)
|
searcher = LeannSearcher(index_path)
|
||||||
results = searcher.search(["word10 word20"], top_k=10)
|
results = searcher.search("word10 word20", top_k=10)
|
||||||
assert len(results[0]) == 10
|
assert len(results) == 10
|
||||||
# Cleanup
|
# Cleanup
|
||||||
searcher.cleanup()
|
searcher.cleanup()
|
||||||
|
|||||||
@@ -123,7 +123,7 @@ class TestPromptTemplateStoredInEmbeddingOptions:
|
|||||||
cli = LeannCLI()
|
cli = LeannCLI()
|
||||||
|
|
||||||
# Mock load_documents to return a document so builder is created
|
# Mock load_documents to return a document so builder is created
|
||||||
cli.load_documents = Mock(return_value=[{"text": "test content", "metadata": {}}])
|
cli.load_documents = Mock(return_value=[{"text": "test content", "metadata": {}}]) # type: ignore[assignment]
|
||||||
|
|
||||||
parser = cli.create_parser()
|
parser = cli.create_parser()
|
||||||
|
|
||||||
@@ -175,7 +175,7 @@ class TestPromptTemplateStoredInEmbeddingOptions:
|
|||||||
cli = LeannCLI()
|
cli = LeannCLI()
|
||||||
|
|
||||||
# Mock load_documents to return a document so builder is created
|
# Mock load_documents to return a document so builder is created
|
||||||
cli.load_documents = Mock(return_value=[{"text": "test content", "metadata": {}}])
|
cli.load_documents = Mock(return_value=[{"text": "test content", "metadata": {}}]) # type: ignore[assignment]
|
||||||
|
|
||||||
parser = cli.create_parser()
|
parser = cli.create_parser()
|
||||||
|
|
||||||
@@ -230,7 +230,7 @@ class TestPromptTemplateStoredInEmbeddingOptions:
|
|||||||
cli = LeannCLI()
|
cli = LeannCLI()
|
||||||
|
|
||||||
# Mock load_documents to return a document so builder is created
|
# Mock load_documents to return a document so builder is created
|
||||||
cli.load_documents = Mock(return_value=[{"text": "test content", "metadata": {}}])
|
cli.load_documents = Mock(return_value=[{"text": "test content", "metadata": {}}]) # type: ignore[assignment]
|
||||||
|
|
||||||
parser = cli.create_parser()
|
parser = cli.create_parser()
|
||||||
|
|
||||||
@@ -307,7 +307,7 @@ class TestPromptTemplateStoredInEmbeddingOptions:
|
|||||||
cli = LeannCLI()
|
cli = LeannCLI()
|
||||||
|
|
||||||
# Mock load_documents to return a document so builder is created
|
# Mock load_documents to return a document so builder is created
|
||||||
cli.load_documents = Mock(return_value=[{"text": "test content", "metadata": {}}])
|
cli.load_documents = Mock(return_value=[{"text": "test content", "metadata": {}}]) # type: ignore[assignment]
|
||||||
|
|
||||||
parser = cli.create_parser()
|
parser = cli.create_parser()
|
||||||
|
|
||||||
@@ -376,7 +376,7 @@ class TestPromptTemplateStoredInEmbeddingOptions:
|
|||||||
cli = LeannCLI()
|
cli = LeannCLI()
|
||||||
|
|
||||||
# Mock load_documents to return a document so builder is created
|
# Mock load_documents to return a document so builder is created
|
||||||
cli.load_documents = Mock(return_value=[{"text": "test content", "metadata": {}}])
|
cli.load_documents = Mock(return_value=[{"text": "test content", "metadata": {}}]) # type: ignore[assignment]
|
||||||
|
|
||||||
parser = cli.create_parser()
|
parser = cli.create_parser()
|
||||||
|
|
||||||
@@ -432,7 +432,7 @@ class TestPromptTemplateFlowsToComputeEmbeddings:
|
|||||||
cli = LeannCLI()
|
cli = LeannCLI()
|
||||||
|
|
||||||
# Mock load_documents to return a simple document
|
# Mock load_documents to return a simple document
|
||||||
cli.load_documents = Mock(return_value=[{"text": "test content", "metadata": {}}])
|
cli.load_documents = Mock(return_value=[{"text": "test content", "metadata": {}}]) # type: ignore[assignment]
|
||||||
|
|
||||||
parser = cli.create_parser()
|
parser = cli.create_parser()
|
||||||
|
|
||||||
|
|||||||
@@ -67,7 +67,7 @@ def check_lmstudio_available() -> bool:
|
|||||||
return False
|
return False
|
||||||
|
|
||||||
|
|
||||||
def get_lmstudio_first_model() -> str:
|
def get_lmstudio_first_model() -> str | None:
|
||||||
"""Get the first available model from LM Studio."""
|
"""Get the first available model from LM Studio."""
|
||||||
try:
|
try:
|
||||||
response = requests.get("http://localhost:1234/v1/models", timeout=5.0)
|
response = requests.get("http://localhost:1234/v1/models", timeout=5.0)
|
||||||
@@ -91,6 +91,7 @@ class TestPromptTemplateOpenAI:
|
|||||||
model_name = get_lmstudio_first_model()
|
model_name = get_lmstudio_first_model()
|
||||||
if not model_name:
|
if not model_name:
|
||||||
pytest.skip("No models loaded in LM Studio")
|
pytest.skip("No models loaded in LM Studio")
|
||||||
|
assert model_name is not None # Type narrowing for type checker
|
||||||
|
|
||||||
texts = ["artificial intelligence", "machine learning"]
|
texts = ["artificial intelligence", "machine learning"]
|
||||||
prompt_template = "search_query: "
|
prompt_template = "search_query: "
|
||||||
@@ -120,6 +121,7 @@ class TestPromptTemplateOpenAI:
|
|||||||
model_name = get_lmstudio_first_model()
|
model_name = get_lmstudio_first_model()
|
||||||
if not model_name:
|
if not model_name:
|
||||||
pytest.skip("No models loaded in LM Studio")
|
pytest.skip("No models loaded in LM Studio")
|
||||||
|
assert model_name is not None # Type narrowing for type checker
|
||||||
|
|
||||||
text = "machine learning"
|
text = "machine learning"
|
||||||
base_url = "http://localhost:1234/v1"
|
base_url = "http://localhost:1234/v1"
|
||||||
@@ -271,6 +273,7 @@ class TestLMStudioSDK:
|
|||||||
model_name = get_lmstudio_first_model()
|
model_name = get_lmstudio_first_model()
|
||||||
if not model_name:
|
if not model_name:
|
||||||
pytest.skip("No models loaded in LM Studio")
|
pytest.skip("No models loaded in LM Studio")
|
||||||
|
assert model_name is not None # Type narrowing for type checker
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from leann.embedding_compute import _query_lmstudio_context_limit
|
from leann.embedding_compute import _query_lmstudio_context_limit
|
||||||
|
|||||||
@@ -581,7 +581,18 @@ class TestQueryTemplateApplicationInComputeEmbedding:
|
|||||||
|
|
||||||
# Create a concrete implementation for testing
|
# Create a concrete implementation for testing
|
||||||
class TestSearcher(BaseSearcher):
|
class TestSearcher(BaseSearcher):
|
||||||
def search(self, query_vectors, top_k, complexity, beam_width=1, **kwargs):
|
def search(
|
||||||
|
self,
|
||||||
|
query,
|
||||||
|
top_k,
|
||||||
|
complexity=64,
|
||||||
|
beam_width=1,
|
||||||
|
prune_ratio=0.0,
|
||||||
|
recompute_embeddings=False,
|
||||||
|
pruning_strategy="global",
|
||||||
|
zmq_port=None,
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
return {"labels": [], "distances": []}
|
return {"labels": [], "distances": []}
|
||||||
|
|
||||||
searcher = object.__new__(TestSearcher)
|
searcher = object.__new__(TestSearcher)
|
||||||
@@ -625,7 +636,18 @@ class TestQueryTemplateApplicationInComputeEmbedding:
|
|||||||
|
|
||||||
# Create a concrete implementation for testing
|
# Create a concrete implementation for testing
|
||||||
class TestSearcher(BaseSearcher):
|
class TestSearcher(BaseSearcher):
|
||||||
def search(self, query_vectors, top_k, complexity, beam_width=1, **kwargs):
|
def search(
|
||||||
|
self,
|
||||||
|
query,
|
||||||
|
top_k,
|
||||||
|
complexity=64,
|
||||||
|
beam_width=1,
|
||||||
|
prune_ratio=0.0,
|
||||||
|
recompute_embeddings=False,
|
||||||
|
pruning_strategy="global",
|
||||||
|
zmq_port=None,
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
return {"labels": [], "distances": []}
|
return {"labels": [], "distances": []}
|
||||||
|
|
||||||
searcher = object.__new__(TestSearcher)
|
searcher = object.__new__(TestSearcher)
|
||||||
@@ -671,7 +693,18 @@ class TestQueryTemplateApplicationInComputeEmbedding:
|
|||||||
from leann.searcher_base import BaseSearcher
|
from leann.searcher_base import BaseSearcher
|
||||||
|
|
||||||
class TestSearcher(BaseSearcher):
|
class TestSearcher(BaseSearcher):
|
||||||
def search(self, query_vectors, top_k, complexity, beam_width=1, **kwargs):
|
def search(
|
||||||
|
self,
|
||||||
|
query,
|
||||||
|
top_k,
|
||||||
|
complexity=64,
|
||||||
|
beam_width=1,
|
||||||
|
prune_ratio=0.0,
|
||||||
|
recompute_embeddings=False,
|
||||||
|
pruning_strategy="global",
|
||||||
|
zmq_port=None,
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
return {"labels": [], "distances": []}
|
return {"labels": [], "distances": []}
|
||||||
|
|
||||||
searcher = object.__new__(TestSearcher)
|
searcher = object.__new__(TestSearcher)
|
||||||
@@ -710,7 +743,18 @@ class TestQueryTemplateApplicationInComputeEmbedding:
|
|||||||
from leann.searcher_base import BaseSearcher
|
from leann.searcher_base import BaseSearcher
|
||||||
|
|
||||||
class TestSearcher(BaseSearcher):
|
class TestSearcher(BaseSearcher):
|
||||||
def search(self, query_vectors, top_k, complexity, beam_width=1, **kwargs):
|
def search(
|
||||||
|
self,
|
||||||
|
query,
|
||||||
|
top_k,
|
||||||
|
complexity=64,
|
||||||
|
beam_width=1,
|
||||||
|
prune_ratio=0.0,
|
||||||
|
recompute_embeddings=False,
|
||||||
|
pruning_strategy="global",
|
||||||
|
zmq_port=None,
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
return {"labels": [], "distances": []}
|
return {"labels": [], "distances": []}
|
||||||
|
|
||||||
searcher = object.__new__(TestSearcher)
|
searcher = object.__new__(TestSearcher)
|
||||||
@@ -774,7 +818,18 @@ class TestQueryTemplateApplicationInComputeEmbedding:
|
|||||||
from leann.searcher_base import BaseSearcher
|
from leann.searcher_base import BaseSearcher
|
||||||
|
|
||||||
class TestSearcher(BaseSearcher):
|
class TestSearcher(BaseSearcher):
|
||||||
def search(self, query_vectors, top_k, complexity, beam_width=1, **kwargs):
|
def search(
|
||||||
|
self,
|
||||||
|
query,
|
||||||
|
top_k,
|
||||||
|
complexity=64,
|
||||||
|
beam_width=1,
|
||||||
|
prune_ratio=0.0,
|
||||||
|
recompute_embeddings=False,
|
||||||
|
pruning_strategy="global",
|
||||||
|
zmq_port=None,
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
return {"labels": [], "distances": []}
|
return {"labels": [], "distances": []}
|
||||||
|
|
||||||
searcher = object.__new__(TestSearcher)
|
searcher = object.__new__(TestSearcher)
|
||||||
|
|||||||
@@ -97,17 +97,17 @@ def test_backend_options():
|
|||||||
|
|
||||||
with tempfile.TemporaryDirectory() as temp_dir:
|
with tempfile.TemporaryDirectory() as temp_dir:
|
||||||
# Use smaller model in CI to avoid memory issues
|
# Use smaller model in CI to avoid memory issues
|
||||||
if os.environ.get("CI") == "true":
|
is_ci = os.environ.get("CI") == "true"
|
||||||
model_args = {
|
embedding_model = (
|
||||||
"embedding_model": "sentence-transformers/all-MiniLM-L6-v2",
|
"sentence-transformers/all-MiniLM-L6-v2" if is_ci else "facebook/contriever"
|
||||||
"dimensions": 384,
|
)
|
||||||
}
|
dimensions = 384 if is_ci else None
|
||||||
else:
|
|
||||||
model_args = {}
|
|
||||||
|
|
||||||
# Test HNSW backend (as shown in README)
|
# Test HNSW backend (as shown in README)
|
||||||
hnsw_path = str(Path(temp_dir) / "test_hnsw.leann")
|
hnsw_path = str(Path(temp_dir) / "test_hnsw.leann")
|
||||||
builder_hnsw = LeannBuilder(backend_name="hnsw", **model_args)
|
builder_hnsw = LeannBuilder(
|
||||||
|
backend_name="hnsw", embedding_model=embedding_model, dimensions=dimensions
|
||||||
|
)
|
||||||
builder_hnsw.add_text("Test document for HNSW backend")
|
builder_hnsw.add_text("Test document for HNSW backend")
|
||||||
builder_hnsw.build_index(hnsw_path)
|
builder_hnsw.build_index(hnsw_path)
|
||||||
assert Path(hnsw_path).parent.exists()
|
assert Path(hnsw_path).parent.exists()
|
||||||
@@ -115,7 +115,9 @@ def test_backend_options():
|
|||||||
|
|
||||||
# Test DiskANN backend (mentioned as available option)
|
# Test DiskANN backend (mentioned as available option)
|
||||||
diskann_path = str(Path(temp_dir) / "test_diskann.leann")
|
diskann_path = str(Path(temp_dir) / "test_diskann.leann")
|
||||||
builder_diskann = LeannBuilder(backend_name="diskann", **model_args)
|
builder_diskann = LeannBuilder(
|
||||||
|
backend_name="diskann", embedding_model=embedding_model, dimensions=dimensions
|
||||||
|
)
|
||||||
builder_diskann.add_text("Test document for DiskANN backend")
|
builder_diskann.add_text("Test document for DiskANN backend")
|
||||||
builder_diskann.build_index(diskann_path)
|
builder_diskann.build_index(diskann_path)
|
||||||
assert Path(diskann_path).parent.exists()
|
assert Path(diskann_path).parent.exists()
|
||||||
|
|||||||
Reference in New Issue
Block a user