Compare commits

..

1 Commits

Author SHA1 Message Date
aakash
d6ed6183d3 fixing chunking token issues within limit for embedding models 2025-10-31 17:08:00 -07:00

View File

@@ -96,7 +96,6 @@ def get_model_token_limit(model_name: str) -> int:
logger.warning(f"Unknown model '{model_name}', using default 512 token limit") logger.warning(f"Unknown model '{model_name}', using default 512 token limit")
return 512 return 512
# Set up logger with proper level # Set up logger with proper level
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
LOG_LEVEL = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper() LOG_LEVEL = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
@@ -867,9 +866,7 @@ def compute_embeddings_ollama(
if retry_count >= max_retries: if retry_count >= max_retries:
# Enhanced error detection for token limit violations # Enhanced error detection for token limit violations
error_msg = str(e).lower() error_msg = str(e).lower()
if "token" in error_msg and ( if "token" in error_msg and ("limit" in error_msg or "exceed" in error_msg or "length" in error_msg):
"limit" in error_msg or "exceed" in error_msg or "length" in error_msg
):
logger.error( logger.error(
f"Token limit exceeded for batch. Error: {e}. " f"Token limit exceeded for batch. Error: {e}. "
f"Consider reducing chunk sizes or check token truncation." f"Consider reducing chunk sizes or check token truncation."