Compare commits
26 Commits
v0.1.14
...
feat/diska
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
fcbcde1ea8 | ||
|
|
54df6310c5 | ||
|
|
19bcc07814 | ||
|
|
8356e3c668 | ||
|
|
08eac5c821 | ||
|
|
4671ed9b36 | ||
|
|
055c086398 | ||
|
|
d505dcc5e3 | ||
|
|
261006c36a | ||
|
|
b2eba23e21 | ||
|
|
e9ee687472 | ||
|
|
6f5d5e4a77 | ||
|
|
5c8921673a | ||
|
|
e9d2d420bd | ||
|
|
ebabfad066 | ||
|
|
e6f612b5e8 | ||
|
|
51c41acd82 | ||
|
|
455f93fb7c | ||
|
|
48207c3b69 | ||
|
|
4de1caa40f | ||
|
|
60eaa8165c | ||
|
|
c1a5d0c624 | ||
|
|
af1790395a | ||
|
|
383c6d8d7e | ||
|
|
bc0d839693 | ||
|
|
8596562de5 |
61
.github/workflows/build-reusable.yml
vendored
61
.github/workflows/build-reusable.yml
vendored
@@ -97,7 +97,8 @@ jobs:
|
||||
- name: Install system dependencies (macOS)
|
||||
if: runner.os == 'macOS'
|
||||
run: |
|
||||
brew install llvm libomp boost protobuf zeromq
|
||||
# Don't install LLVM, use system clang for better compatibility
|
||||
brew install libomp boost protobuf zeromq
|
||||
|
||||
- name: Install build dependencies
|
||||
run: |
|
||||
@@ -120,7 +121,11 @@ jobs:
|
||||
# Build HNSW backend
|
||||
cd packages/leann-backend-hnsw
|
||||
if [ "${{ matrix.os }}" == "macos-latest" ]; then
|
||||
CC=$(brew --prefix llvm)/bin/clang CXX=$(brew --prefix llvm)/bin/clang++ uv build --wheel --python python
|
||||
# Use system clang instead of homebrew LLVM for better compatibility
|
||||
export CC=clang
|
||||
export CXX=clang++
|
||||
export MACOSX_DEPLOYMENT_TARGET=11.0
|
||||
uv build --wheel --python python
|
||||
else
|
||||
uv build --wheel --python python
|
||||
fi
|
||||
@@ -129,7 +134,12 @@ jobs:
|
||||
# Build DiskANN backend
|
||||
cd packages/leann-backend-diskann
|
||||
if [ "${{ matrix.os }}" == "macos-latest" ]; then
|
||||
CC=$(brew --prefix llvm)/bin/clang CXX=$(brew --prefix llvm)/bin/clang++ uv build --wheel --python python
|
||||
# Use system clang instead of homebrew LLVM for better compatibility
|
||||
export CC=clang
|
||||
export CXX=clang++
|
||||
# DiskANN requires macOS 13.3+ for sgesdd_ LAPACK function
|
||||
export MACOSX_DEPLOYMENT_TARGET=13.3
|
||||
uv build --wheel --python python
|
||||
else
|
||||
uv build --wheel --python python
|
||||
fi
|
||||
@@ -189,6 +199,51 @@ jobs:
|
||||
echo "📦 Built packages:"
|
||||
find packages/*/dist -name "*.whl" -o -name "*.tar.gz" | sort
|
||||
|
||||
- name: Install built packages for testing
|
||||
run: |
|
||||
# Create a virtual environment
|
||||
uv venv
|
||||
source .venv/bin/activate || source .venv/Scripts/activate
|
||||
|
||||
# Install the built wheels
|
||||
# Use --find-links to let uv choose the correct wheel for the platform
|
||||
if [[ "${{ matrix.os }}" == ubuntu-* ]]; then
|
||||
uv pip install leann-core --find-links packages/leann-core/dist
|
||||
uv pip install leann --find-links packages/leann/dist
|
||||
fi
|
||||
uv pip install leann-backend-hnsw --find-links packages/leann-backend-hnsw/dist
|
||||
uv pip install leann-backend-diskann --find-links packages/leann-backend-diskann/dist
|
||||
|
||||
# Install test dependencies using extras
|
||||
uv pip install -e ".[test]"
|
||||
|
||||
- name: Run tests with pytest
|
||||
env:
|
||||
CI: true # Mark as CI environment to skip memory-intensive tests
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
HF_HUB_DISABLE_SYMLINKS: 1
|
||||
TOKENIZERS_PARALLELISM: false
|
||||
PYTORCH_ENABLE_MPS_FALLBACK: 0 # Disable MPS on macOS CI to avoid memory issues
|
||||
OMP_NUM_THREADS: 1 # Disable OpenMP parallelism to avoid libomp crashes
|
||||
MKL_NUM_THREADS: 1 # Single thread for MKL operations
|
||||
run: |
|
||||
# Activate virtual environment
|
||||
source .venv/bin/activate || source .venv/Scripts/activate
|
||||
|
||||
# Run all tests
|
||||
pytest tests/
|
||||
|
||||
- name: Run sanity checks (optional)
|
||||
run: |
|
||||
# Activate virtual environment
|
||||
source .venv/bin/activate || source .venv/Scripts/activate
|
||||
|
||||
# Run distance function tests if available
|
||||
if [ -f test/sanity_checks/test_distance_functions.py ]; then
|
||||
echo "Running distance function sanity checks..."
|
||||
python test/sanity_checks/test_distance_functions.py || echo "⚠️ Distance function test failed, continuing..."
|
||||
fi
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
|
||||
2
.gitignore
vendored
2
.gitignore
vendored
@@ -86,3 +86,5 @@ packages/leann-backend-diskann/third_party/DiskANN/_deps/
|
||||
*.passages.json
|
||||
|
||||
batchtest.py
|
||||
tests/__pytest_cache__/
|
||||
tests/__pycache__/
|
||||
|
||||
@@ -9,15 +9,8 @@ repos:
|
||||
- id: check-merge-conflict
|
||||
- id: debug-statements
|
||||
|
||||
- repo: https://github.com/psf/black
|
||||
rev: 24.1.1
|
||||
hooks:
|
||||
- id: black
|
||||
language_version: python3
|
||||
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.2.1
|
||||
hooks:
|
||||
- id: ruff
|
||||
args: [--fix]
|
||||
- id: ruff-format
|
||||
|
||||
171
README.md
171
README.md
@@ -33,12 +33,46 @@ LEANN achieves this through *graph-based selective recomputation* with *high-deg
|
||||
|
||||
🪶 **Lightweight:** Graph-based recomputation eliminates heavy embedding storage, while smart graph pruning and CSR format minimize graph storage overhead. Always less storage, less memory usage!
|
||||
|
||||
📦 **Portable:** Transfer your entire knowledge base between devices (even with others) with minimal cost - your personal AI memory travels with you.
|
||||
|
||||
📈 **Scalability:** Handle messy personal data that would crash traditional vector DBs, easily managing your growing personalized data and agent generated memory!
|
||||
|
||||
✨ **No Accuracy Loss:** Maintain the same search quality as heavyweight solutions while using 97% less storage.
|
||||
|
||||
## Installation
|
||||
> `pip leann` coming soon!
|
||||
|
||||
<details>
|
||||
<summary><strong>📦 Prerequisites: Install uv (if you don't have it)</strong></summary>
|
||||
|
||||
Install uv first if you don't have it:
|
||||
|
||||
```bash
|
||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
```
|
||||
|
||||
📖 [Detailed uv installation methods →](https://docs.astral.sh/uv/getting-started/installation/#installation-methods)
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
LEANN provides two installation methods: **pip install** (quick and easy) and **build from source** (recommended for development).
|
||||
|
||||
|
||||
|
||||
### 🚀 Quick Install (Recommended for most users)
|
||||
|
||||
Clone the repository to access all examples and install LEANN from [PyPI](https://pypi.org/project/leann/) to run them immediately:
|
||||
|
||||
```bash
|
||||
git clone git@github.com:yichuan-w/LEANN.git leann
|
||||
cd leann
|
||||
uv venv
|
||||
source .venv/bin/activate
|
||||
uv pip install leann
|
||||
```
|
||||
|
||||
### 🔧 Build from Source (Recommended for development)
|
||||
|
||||
```bash
|
||||
git clone git@github.com:yichuan-w/LEANN.git leann
|
||||
cd leann
|
||||
@@ -48,27 +82,65 @@ git submodule update --init --recursive
|
||||
**macOS:**
|
||||
```bash
|
||||
brew install llvm libomp boost protobuf zeromq pkgconf
|
||||
|
||||
# Install with HNSW backend (default, recommended for most users)
|
||||
# Install uv first if you don't have it:
|
||||
# curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
# See: https://docs.astral.sh/uv/getting-started/installation/#installation-methods
|
||||
CC=$(brew --prefix llvm)/bin/clang CXX=$(brew --prefix llvm)/bin/clang++ uv sync
|
||||
```
|
||||
|
||||
**Linux:**
|
||||
```bash
|
||||
sudo apt-get install libomp-dev libboost-all-dev protobuf-compiler libabsl-dev libmkl-full-dev libaio-dev libzmq3-dev
|
||||
|
||||
# Install with HNSW backend (default, recommended for most users)
|
||||
uv sync
|
||||
```
|
||||
|
||||
|
||||
**Ollama Setup (Recommended for full privacy):**
|
||||
|
||||
> *You can skip this installation if you only want to use OpenAI API for generation.*
|
||||
|
||||
## Quick Start
|
||||
|
||||
Our declarative API makes RAG as easy as writing a config file.
|
||||
|
||||
[](https://colab.research.google.com/github/yichuan-w/LEANN/blob/main/demo.ipynb) [Try in this ipynb file →](demo.ipynb)
|
||||
|
||||
```python
|
||||
from leann import LeannBuilder, LeannSearcher, LeannChat
|
||||
from pathlib import Path
|
||||
INDEX_PATH = str(Path("./").resolve() / "demo.leann")
|
||||
|
||||
# Build an index
|
||||
builder = LeannBuilder(backend_name="hnsw")
|
||||
builder.add_text("LEANN saves 97% storage compared to traditional vector databases.")
|
||||
builder.add_text("Tung Tung Tung Sahur called—they need their banana‑crocodile hybrid back")
|
||||
builder.build_index(INDEX_PATH)
|
||||
|
||||
# Search
|
||||
searcher = LeannSearcher(INDEX_PATH)
|
||||
results = searcher.search("fantastical AI-generated creatures", top_k=1)
|
||||
|
||||
# Chat with your data
|
||||
chat = LeannChat(INDEX_PATH, llm_config={"type": "hf", "model": "Qwen/Qwen3-0.6B"})
|
||||
response = chat.ask("How much storage does LEANN save?", top_k=1)
|
||||
```
|
||||
|
||||
## RAG on Everything!
|
||||
|
||||
LEANN supports RAG on various data sources including documents (.pdf, .txt, .md), Apple Mail, Google Search History, WeChat, and more.
|
||||
|
||||
|
||||
> **Generation Model Setup**
|
||||
> LEANN supports multiple LLM providers for text generation (OpenAI API, HuggingFace, Ollama).
|
||||
|
||||
<details>
|
||||
<summary><strong>🔑 OpenAI API Setup (Default)</strong></summary>
|
||||
|
||||
Set your OpenAI API key as an environment variable:
|
||||
|
||||
```bash
|
||||
export OPENAI_API_KEY="your-api-key-here"
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary><strong>🔧 Ollama Setup (Recommended for full privacy)</strong></summary>
|
||||
|
||||
**macOS:**
|
||||
|
||||
@@ -80,6 +152,7 @@ ollama pull llama3.2:1b
|
||||
```
|
||||
|
||||
**Linux:**
|
||||
|
||||
```bash
|
||||
# Install Ollama
|
||||
curl -fsSL https://ollama.ai/install.sh | sh
|
||||
@@ -91,43 +164,7 @@ ollama serve &
|
||||
ollama pull llama3.2:1b
|
||||
```
|
||||
|
||||
## Quick Start in 30s
|
||||
|
||||
Our declarative API makes RAG as easy as writing a config file.
|
||||
[Try in this ipynb file →](demo.ipynb) [](https://colab.research.google.com/github/yichuan-w/LEANN/blob/main/demo.ipynb)
|
||||
|
||||
```python
|
||||
from leann.api import LeannBuilder, LeannSearcher, LeannChat
|
||||
|
||||
# 1. Build the index (no embeddings stored!)
|
||||
builder = LeannBuilder(backend_name="hnsw")
|
||||
builder.add_text("C# is a powerful programming language")
|
||||
builder.add_text("Python is a powerful programming language and it is very popular")
|
||||
builder.add_text("Machine learning transforms industries")
|
||||
builder.add_text("Neural networks process complex data")
|
||||
builder.add_text("Leann is a great storage saving engine for RAG on your MacBook")
|
||||
builder.build_index("knowledge.leann")
|
||||
|
||||
# 2. Search with real-time embeddings
|
||||
searcher = LeannSearcher("knowledge.leann")
|
||||
results = searcher.search("programming languages", top_k=2)
|
||||
|
||||
# 3. Chat with LEANN using retrieved results
|
||||
llm_config = {
|
||||
"type": "ollama",
|
||||
"model": "llama3.2:1b"
|
||||
}
|
||||
|
||||
chat = LeannChat(index_path="knowledge.leann", llm_config=llm_config)
|
||||
response = chat.ask(
|
||||
"Compare the two retrieved programming languages and say which one is more popular today.",
|
||||
top_k=2,
|
||||
)
|
||||
```
|
||||
|
||||
## RAG on Everything!
|
||||
|
||||
LEANN supports RAG on various data sources including documents (.pdf, .txt, .md), Apple Mail, Google Search History, WeChat, and more.
|
||||
</details>
|
||||
|
||||
### 📄 Personal Data Manager: Process Any Documents (.pdf, .txt, .md)!
|
||||
|
||||
@@ -137,35 +174,46 @@ Ask questions directly about your personal PDFs, documents, and any directory co
|
||||
<img src="videos/paper_clear.gif" alt="LEANN Document Search Demo" width="600">
|
||||
</p>
|
||||
|
||||
The example below asks a question about summarizing two papers (uses default data in `examples/data`):
|
||||
The example below asks a question about summarizing two papers (uses default data in `examples/data`) and this is the easiest example to run here:
|
||||
|
||||
```bash
|
||||
# Drop your PDFs, .txt, .md files into examples/data/
|
||||
uv run ./examples/main_cli_example.py
|
||||
```
|
||||
|
||||
```
|
||||
# Or use python directly
|
||||
source .venv/bin/activate
|
||||
python ./examples/main_cli_example.py
|
||||
```
|
||||
|
||||
<details>
|
||||
<summary><strong>📋 Click to expand: User Configurable Arguments</strong></summary>
|
||||
|
||||
```bash
|
||||
# Use custom index directory
|
||||
python examples/main_cli_example.py --index-dir "./my_custom_index"
|
||||
|
||||
# Use custom data directory
|
||||
python examples/main_cli_example.py --data-dir "./my_documents"
|
||||
|
||||
# Ask a specific question
|
||||
python examples/main_cli_example.py --query "What are the main findings in these papers?"
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
### 📧 Your Personal Email Secretary: RAG on Apple Mail!
|
||||
|
||||
> **Note:** The examples below currently support macOS only. Windows support coming soon.
|
||||
|
||||
|
||||
<p align="center">
|
||||
<img src="videos/mail_clear.gif" alt="LEANN Email Search Demo" width="600">
|
||||
</p>
|
||||
|
||||
**Note:** You need to grant full disk access to your terminal/VS Code in System Preferences → Privacy & Security → Full Disk Access.
|
||||
```bash
|
||||
python examples/mail_reader_leann.py --query "What's the food I ordered by doordash or Uber eat mostly?"
|
||||
python examples/mail_reader_leann.py --query "What's the food I ordered by DoorDash or Uber Eats mostly?"
|
||||
```
|
||||
**780K email chunks → 78MB storage** Finally, search your email like you search Google.
|
||||
**780K email chunks → 78MB storage.** Finally, search your email like you search Google.
|
||||
|
||||
<details>
|
||||
<summary><strong>📋 Click to expand: Command Examples</strong></summary>
|
||||
<summary><strong>📋 Click to expand: User Configurable Arguments</strong></summary>
|
||||
|
||||
```bash
|
||||
# Use default mail path (works for most macOS setups)
|
||||
@@ -207,7 +255,7 @@ python examples/google_history_reader_leann.py --query "Tell me my browser histo
|
||||
**38K browser entries → 6MB storage.** Your browser history becomes your personal search engine.
|
||||
|
||||
<details>
|
||||
<summary><strong>📋 Click to expand: Command Examples</strong></summary>
|
||||
<summary><strong>📋 Click to expand: User Configurable Arguments</strong></summary>
|
||||
|
||||
```bash
|
||||
# Use default Chrome profile (auto-finds all profiles)
|
||||
@@ -284,7 +332,7 @@ Failed to find or export WeChat data. Exiting.
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary><strong>📋 Click to expand: Command Examples</strong></summary>
|
||||
<summary><strong>📋 Click to expand: User Configurable Arguments</strong></summary>
|
||||
|
||||
```bash
|
||||
# Use default settings (recommended for first run)
|
||||
@@ -441,10 +489,10 @@ If you find Leann useful, please cite:
|
||||
|
||||
## ✨ [Detailed Features →](docs/features.md)
|
||||
|
||||
## 🤝 [Contributing →](docs/contributing.md)
|
||||
## 🤝 [CONTRIBUTING →](docs/CONTRIBUTING.md)
|
||||
|
||||
|
||||
## [FAQ →](docs/faq.md)
|
||||
## ❓ [FAQ →](docs/faq.md)
|
||||
|
||||
|
||||
## 📈 [Roadmap →](docs/roadmap.md)
|
||||
@@ -465,4 +513,3 @@ This work is done at [**Berkeley Sky Computing Lab**](https://sky.cs.berkeley.e
|
||||
<p align="center">
|
||||
Made with ❤️ by the Leann team
|
||||
</p>
|
||||
|
||||
|
||||
141
demo.ipynb
141
demo.ipynb
@@ -4,7 +4,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Quick Start in 30s\n",
|
||||
"# Quick Start \n",
|
||||
"\n",
|
||||
"**Home GitHub Repository:** [LEANN on GitHub](https://github.com/yichuan-w/LEANN)\n",
|
||||
"\n",
|
||||
@@ -49,68 +49,7 @@
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Writing passages: 100%|██████████| 5/5 [00:00<00:00, 17077.79chunk/s]\n",
|
||||
"Batches: 100%|██████████| 1/1 [00:00<00:00, 36.43it/s]\n",
|
||||
"WARNING:leann_backend_hnsw.hnsw_backend:Converting data to float32, shape: (5, 768)\n",
|
||||
"INFO:leann_backend_hnsw.hnsw_backend:INFO: Converting HNSW index to CSR-pruned format...\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"M: 64 for level: 0\n",
|
||||
"Starting conversion: index.index -> index.csr.tmp\n",
|
||||
"[0.00s] Reading Index HNSW header...\n",
|
||||
"[0.00s] Header read: d=768, ntotal=5\n",
|
||||
"[0.00s] Reading HNSW struct vectors...\n",
|
||||
" Reading vector (dtype=<class 'numpy.float64'>, fmt='d')... Count=6, Bytes=48\n",
|
||||
"[0.00s] Read assign_probas (6)\n",
|
||||
" Reading vector (dtype=<class 'numpy.int32'>, fmt='i')... Count=7, Bytes=28\n",
|
||||
"[0.14s] Read cum_nneighbor_per_level (7)\n",
|
||||
" Reading vector (dtype=<class 'numpy.int32'>, fmt='i')... Count=5, Bytes=20\n",
|
||||
"[0.24s] Read levels (5)\n",
|
||||
"[0.33s] Probing for compact storage flag...\n",
|
||||
"[0.33s] Found compact flag: False\n",
|
||||
"[0.33s] Compact flag is False, reading original format...\n",
|
||||
"[0.33s] Probing for potential extra byte before non-compact offsets...\n",
|
||||
"[0.33s] Found and consumed an unexpected 0x00 byte.\n",
|
||||
" Reading vector (dtype=<class 'numpy.uint64'>, fmt='Q')... Count=6, Bytes=48\n",
|
||||
"[0.33s] Read offsets (6)\n",
|
||||
"[0.41s] Attempting to read neighbors vector...\n",
|
||||
" Reading vector (dtype=<class 'numpy.int32'>, fmt='i')... Count=320, Bytes=1280\n",
|
||||
"[0.41s] Read neighbors (320)\n",
|
||||
"[0.54s] Read scalar params (ep=4, max_lvl=0)\n",
|
||||
"[0.54s] Checking for storage data...\n",
|
||||
"[0.54s] Found storage fourcc: 49467849.\n",
|
||||
"[0.54s] Converting to CSR format...\n",
|
||||
"[0.54s] Conversion loop finished. \n",
|
||||
"[0.54s] Running validation checks...\n",
|
||||
" Checking total valid neighbor count...\n",
|
||||
" OK: Total valid neighbors = 20\n",
|
||||
" Checking final pointer indices...\n",
|
||||
" OK: Final pointers match data size.\n",
|
||||
"[0.54s] Deleting original neighbors and offsets arrays...\n",
|
||||
" CSR Stats: |data|=20, |level_ptr|=10\n",
|
||||
"[0.63s] Writing CSR HNSW graph data in FAISS-compatible order...\n",
|
||||
" Pruning embeddings: Writing NULL storage marker.\n",
|
||||
"[0.71s] Conversion complete.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"INFO:leann_backend_hnsw.hnsw_backend:✅ CSR conversion successful.\n",
|
||||
"INFO:leann_backend_hnsw.hnsw_backend:INFO: Replaced original index with CSR-pruned version at 'index.index'\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from leann.api import LeannBuilder\n",
|
||||
"\n",
|
||||
@@ -136,81 +75,7 @@
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"INFO:leann.api:🔍 LeannSearcher.search() called:\n",
|
||||
"INFO:leann.api: Query: 'programming languages'\n",
|
||||
"INFO:leann.api: Top_k: 2\n",
|
||||
"INFO:leann.api: Additional kwargs: {}\n",
|
||||
"INFO:leann.embedding_server_manager:Port 5557 has incompatible server, trying next port...\n",
|
||||
"INFO:leann.embedding_server_manager:Port 5558 has incompatible server, trying next port...\n",
|
||||
"INFO:leann.embedding_server_manager:Port 5559 has incompatible server, trying next port...\n",
|
||||
"INFO:leann.embedding_server_manager:Port 5560 has incompatible server, trying next port...\n",
|
||||
"INFO:leann.embedding_server_manager:Port 5561 has incompatible server, trying next port...\n",
|
||||
"INFO:leann.embedding_server_manager:Port 5562 has incompatible server, trying next port...\n",
|
||||
"INFO:leann.embedding_server_manager:Starting embedding server on port 5563...\n",
|
||||
"INFO:leann.embedding_server_manager:Command: /Users/yichuan/Desktop/code/test_leann_pip/LEANN/.venv/bin/python -m leann_backend_hnsw.hnsw_embedding_server --zmq-port 5563 --model-name facebook/contriever --passages-file /Users/yichuan/Desktop/code/test_leann_pip/LEANN/content/index.meta.json\n",
|
||||
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
|
||||
"To disable this warning, you can either:\n",
|
||||
"\t- Avoid using `tokenizers` before the fork if possible\n",
|
||||
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n",
|
||||
"INFO:leann.embedding_server_manager:Server process started with PID: 31699\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[read_HNSW - CSR NL v4] Reading metadata & CSR indices (manual offset)...\n",
|
||||
"[read_HNSW NL v4] Read levels vector, size: 5\n",
|
||||
"[read_HNSW NL v4] Reading Compact Storage format indices...\n",
|
||||
"[read_HNSW NL v4] Read compact_level_ptr, size: 10\n",
|
||||
"[read_HNSW NL v4] Read compact_node_offsets, size: 6\n",
|
||||
"[read_HNSW NL v4] Read entry_point: 4, max_level: 0\n",
|
||||
"[read_HNSW NL v4] Read storage fourcc: 0x6c6c756e\n",
|
||||
"[read_HNSW NL v4 FIX] Detected FileIOReader. Neighbors size field offset: 326\n",
|
||||
"[read_HNSW NL v4] Reading neighbors data into memory.\n",
|
||||
"[read_HNSW NL v4] Read neighbors data, size: 20\n",
|
||||
"[read_HNSW NL v4] Finished reading metadata and CSR indices.\n",
|
||||
"INFO: Skipping external storage loading, since is_recompute is true.\n",
|
||||
"INFO: Registering backend 'hnsw'\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Traceback (most recent call last):\n",
|
||||
" File \"<frozen runpy>\", line 198, in _run_module_as_main\n",
|
||||
" File \"<frozen runpy>\", line 88, in _run_code\n",
|
||||
" File \"/Users/yichuan/Desktop/code/test_leann_pip/LEANN/.venv/lib/python3.11/site-packages/leann_backend_hnsw/hnsw_embedding_server.py\", line 323, in <module>\n",
|
||||
" create_hnsw_embedding_server(\n",
|
||||
" File \"/Users/yichuan/Desktop/code/test_leann_pip/LEANN/.venv/lib/python3.11/site-packages/leann_backend_hnsw/hnsw_embedding_server.py\", line 98, in create_hnsw_embedding_server\n",
|
||||
" passages = PassageManager(passage_sources)\n",
|
||||
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
||||
" File \"/Users/yichuan/Desktop/code/test_leann_pip/LEANN/.venv/lib/python3.11/site-packages/leann/api.py\", line 127, in __init__\n",
|
||||
" raise FileNotFoundError(f\"Passage index file not found: {index_file}\")\n",
|
||||
"FileNotFoundError: Passage index file not found: /Users/yichuan/Desktop/code/test_leann_pip/LEANN/index.passages.idx\n",
|
||||
"ERROR:leann.embedding_server_manager:Server terminated during startup.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"ename": "RuntimeError",
|
||||
"evalue": "Failed to start embedding server on port 5563",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[31m---------------------------------------------------------------------------\u001b[39m",
|
||||
"\u001b[31mRuntimeError\u001b[39m Traceback (most recent call last)",
|
||||
"\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[4]\u001b[39m\u001b[32m, line 4\u001b[39m\n\u001b[32m 1\u001b[39m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01mleann\u001b[39;00m\u001b[34;01m.\u001b[39;00m\u001b[34;01mapi\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m LeannSearcher\n\u001b[32m 3\u001b[39m searcher = LeannSearcher(\u001b[33m\"\u001b[39m\u001b[33mindex\u001b[39m\u001b[33m\"\u001b[39m)\n\u001b[32m----> \u001b[39m\u001b[32m4\u001b[39m results = \u001b[43msearcher\u001b[49m\u001b[43m.\u001b[49m\u001b[43msearch\u001b[49m\u001b[43m(\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mprogramming languages\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtop_k\u001b[49m\u001b[43m=\u001b[49m\u001b[32;43m2\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[32m 5\u001b[39m results\n",
|
||||
"\u001b[36mFile \u001b[39m\u001b[32m~/Desktop/code/test_leann_pip/LEANN/.venv/lib/python3.11/site-packages/leann/api.py:439\u001b[39m, in \u001b[36mLeannSearcher.search\u001b[39m\u001b[34m(self, query, top_k, complexity, beam_width, prune_ratio, recompute_embeddings, pruning_strategy, expected_zmq_port, **kwargs)\u001b[39m\n\u001b[32m 437\u001b[39m start_time = time.time()\n\u001b[32m 438\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m recompute_embeddings:\n\u001b[32m--> \u001b[39m\u001b[32m439\u001b[39m zmq_port = \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mbackend_impl\u001b[49m\u001b[43m.\u001b[49m\u001b[43m_ensure_server_running\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 440\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mmeta_path_str\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 441\u001b[39m \u001b[43m \u001b[49m\u001b[43mport\u001b[49m\u001b[43m=\u001b[49m\u001b[43mexpected_zmq_port\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 442\u001b[39m \u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 443\u001b[39m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 444\u001b[39m \u001b[38;5;28;01mdel\u001b[39;00m expected_zmq_port\n\u001b[32m 445\u001b[39m zmq_time = time.time() - start_time\n",
|
||||
"\u001b[36mFile \u001b[39m\u001b[32m~/Desktop/code/test_leann_pip/LEANN/.venv/lib/python3.11/site-packages/leann/searcher_base.py:81\u001b[39m, in \u001b[36mBaseSearcher._ensure_server_running\u001b[39m\u001b[34m(self, passages_source_file, port, **kwargs)\u001b[39m\n\u001b[32m 72\u001b[39m server_started, actual_port = \u001b[38;5;28mself\u001b[39m.embedding_server_manager.start_server(\n\u001b[32m 73\u001b[39m port=port,\n\u001b[32m 74\u001b[39m model_name=\u001b[38;5;28mself\u001b[39m.embedding_model,\n\u001b[32m (...)\u001b[39m\u001b[32m 78\u001b[39m enable_warmup=kwargs.get(\u001b[33m\"\u001b[39m\u001b[33menable_warmup\u001b[39m\u001b[33m\"\u001b[39m, \u001b[38;5;28;01mFalse\u001b[39;00m),\n\u001b[32m 79\u001b[39m )\n\u001b[32m 80\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m server_started:\n\u001b[32m---> \u001b[39m\u001b[32m81\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\n\u001b[32m 82\u001b[39m \u001b[33mf\u001b[39m\u001b[33m\"\u001b[39m\u001b[33mFailed to start embedding server on port \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mactual_port\u001b[38;5;132;01m}\u001b[39;00m\u001b[33m\"\u001b[39m\n\u001b[32m 83\u001b[39m )\n\u001b[32m 85\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m actual_port\n",
|
||||
"\u001b[31mRuntimeError\u001b[39m: Failed to start embedding server on port 5563"
|
||||
]
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from leann.api import LeannSearcher\n",
|
||||
"\n",
|
||||
|
||||
220
docs/CONTRIBUTING.md
Normal file
220
docs/CONTRIBUTING.md
Normal file
@@ -0,0 +1,220 @@
|
||||
# 🤝 Contributing
|
||||
|
||||
We welcome contributions! Leann is built by the community, for the community.
|
||||
|
||||
## Ways to Contribute
|
||||
|
||||
- 🐛 **Bug Reports**: Found an issue? Let us know!
|
||||
- 💡 **Feature Requests**: Have an idea? We'd love to hear it!
|
||||
- 🔧 **Code Contributions**: PRs welcome for all skill levels
|
||||
- 📖 **Documentation**: Help make Leann more accessible
|
||||
- 🧪 **Benchmarks**: Share your performance results
|
||||
|
||||
## 🚀 Development Setup
|
||||
|
||||
### Prerequisites
|
||||
|
||||
1. **Install uv** (fast Python package installer):
|
||||
```bash
|
||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
```
|
||||
|
||||
2. **Clone the repository**:
|
||||
```bash
|
||||
git clone https://github.com/LEANN-RAG/LEANN-RAG.git
|
||||
cd LEANN-RAG
|
||||
```
|
||||
|
||||
3. **Install system dependencies**:
|
||||
|
||||
**macOS:**
|
||||
```bash
|
||||
brew install llvm libomp boost protobuf zeromq pkgconf
|
||||
```
|
||||
|
||||
**Ubuntu/Debian:**
|
||||
```bash
|
||||
sudo apt-get install libomp-dev libboost-all-dev protobuf-compiler \
|
||||
libabsl-dev libmkl-full-dev libaio-dev libzmq3-dev
|
||||
```
|
||||
|
||||
4. **Build from source**:
|
||||
```bash
|
||||
# macOS
|
||||
CC=$(brew --prefix llvm)/bin/clang CXX=$(brew --prefix llvm)/bin/clang++ uv sync
|
||||
|
||||
# Ubuntu/Debian
|
||||
uv sync
|
||||
```
|
||||
|
||||
## 🔨 Pre-commit Hooks
|
||||
|
||||
We use pre-commit hooks to ensure code quality and consistency. This runs automatically before each commit.
|
||||
|
||||
### Setup Pre-commit
|
||||
|
||||
1. **Install pre-commit** (already included when you run `uv sync`):
|
||||
```bash
|
||||
uv pip install pre-commit
|
||||
```
|
||||
|
||||
2. **Install the git hooks**:
|
||||
```bash
|
||||
pre-commit install
|
||||
```
|
||||
|
||||
3. **Run pre-commit manually** (optional):
|
||||
```bash
|
||||
pre-commit run --all-files
|
||||
```
|
||||
|
||||
### Pre-commit Checks
|
||||
|
||||
Our pre-commit configuration includes:
|
||||
- **Trailing whitespace removal**
|
||||
- **End-of-file fixing**
|
||||
- **YAML validation**
|
||||
- **Large file prevention**
|
||||
- **Merge conflict detection**
|
||||
- **Debug statement detection**
|
||||
- **Code formatting with ruff**
|
||||
- **Code linting with ruff**
|
||||
|
||||
## 🧪 Testing
|
||||
|
||||
### Running Tests
|
||||
|
||||
```bash
|
||||
# Run all tests
|
||||
uv run pytest
|
||||
|
||||
# Run specific test file
|
||||
uv run pytest test/test_filename.py
|
||||
|
||||
# Run with coverage
|
||||
uv run pytest --cov=leann
|
||||
```
|
||||
|
||||
### Writing Tests
|
||||
|
||||
- Place tests in the `test/` directory
|
||||
- Follow the naming convention `test_*.py`
|
||||
- Use descriptive test names that explain what's being tested
|
||||
- Include both positive and negative test cases
|
||||
|
||||
## 📝 Code Style
|
||||
|
||||
We use `ruff` for both linting and formatting to ensure consistent code style.
|
||||
|
||||
### Format Your Code
|
||||
|
||||
```bash
|
||||
# Format all files
|
||||
ruff format
|
||||
|
||||
# Check formatting without changing files
|
||||
ruff format --check
|
||||
```
|
||||
|
||||
### Lint Your Code
|
||||
|
||||
```bash
|
||||
# Run linter with auto-fix
|
||||
ruff check --fix
|
||||
|
||||
# Just check without fixing
|
||||
ruff check
|
||||
```
|
||||
|
||||
### Style Guidelines
|
||||
|
||||
- Follow PEP 8 conventions
|
||||
- Use descriptive variable names
|
||||
- Add type hints where appropriate
|
||||
- Write docstrings for all public functions and classes
|
||||
- Keep functions focused and single-purpose
|
||||
|
||||
## 🚦 CI/CD
|
||||
|
||||
Our CI pipeline runs automatically on all pull requests. It includes:
|
||||
|
||||
1. **Linting and Formatting**: Ensures code follows our style guidelines
|
||||
2. **Multi-platform builds**: Tests on Ubuntu and macOS
|
||||
3. **Python version matrix**: Tests on Python 3.9-3.13
|
||||
4. **Wheel building**: Ensures packages can be built and distributed
|
||||
|
||||
### CI Commands
|
||||
|
||||
The CI uses the same commands as pre-commit to ensure consistency:
|
||||
```bash
|
||||
# Linting
|
||||
ruff check .
|
||||
|
||||
# Format checking
|
||||
ruff format --check .
|
||||
```
|
||||
|
||||
Make sure your code passes these checks locally before pushing!
|
||||
|
||||
## 🔄 Pull Request Process
|
||||
|
||||
1. **Fork the repository** and create your branch from `main`:
|
||||
```bash
|
||||
git checkout -b feature/your-feature-name
|
||||
```
|
||||
|
||||
2. **Make your changes**:
|
||||
- Write clean, documented code
|
||||
- Add tests for new functionality
|
||||
- Update documentation as needed
|
||||
|
||||
3. **Run pre-commit checks**:
|
||||
```bash
|
||||
pre-commit run --all-files
|
||||
```
|
||||
|
||||
4. **Test your changes**:
|
||||
```bash
|
||||
uv run pytest
|
||||
```
|
||||
|
||||
5. **Commit with descriptive messages**:
|
||||
```bash
|
||||
git commit -m "feat: add new search algorithm"
|
||||
```
|
||||
|
||||
Follow [Conventional Commits](https://www.conventionalcommits.org/):
|
||||
- `feat:` for new features
|
||||
- `fix:` for bug fixes
|
||||
- `docs:` for documentation changes
|
||||
- `test:` for test additions/changes
|
||||
- `refactor:` for code refactoring
|
||||
- `perf:` for performance improvements
|
||||
|
||||
6. **Push and create a pull request**:
|
||||
- Provide a clear description of your changes
|
||||
- Reference any related issues
|
||||
- Include examples or screenshots if applicable
|
||||
|
||||
## 📚 Documentation
|
||||
|
||||
When adding new features or making significant changes:
|
||||
|
||||
1. Update relevant documentation in `/docs`
|
||||
2. Add docstrings to new functions/classes
|
||||
3. Update README.md if needed
|
||||
4. Include usage examples
|
||||
|
||||
## 🤔 Getting Help
|
||||
|
||||
- **Discord**: Join our community for discussions
|
||||
- **Issues**: Check existing issues or create a new one
|
||||
- **Discussions**: For general questions and ideas
|
||||
|
||||
## 📄 License
|
||||
|
||||
By contributing, you agree that your contributions will be licensed under the same license as the project (MIT).
|
||||
|
||||
---
|
||||
|
||||
Thank you for contributing to LEANN! Every contribution, no matter how small, helps make the project better for everyone. 🌟
|
||||
98
docs/code/embedding_model_compare.py
Normal file
98
docs/code/embedding_model_compare.py
Normal file
@@ -0,0 +1,98 @@
|
||||
"""
|
||||
Comparison between Sentence Transformers and OpenAI embeddings
|
||||
|
||||
This example shows how different embedding models handle complex queries
|
||||
and demonstrates the differences between local and API-based embeddings.
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
from leann.embedding_compute import compute_embeddings
|
||||
|
||||
# OpenAI API key should be set as environment variable
|
||||
# export OPENAI_API_KEY="your-api-key-here"
|
||||
|
||||
# Test data
|
||||
conference_text = "[Title]: COLING 2025 Conference\n[URL]: https://coling2025.org/"
|
||||
browser_text = "[Title]: Browser Use Tool\n[URL]: https://github.com/browser-use"
|
||||
|
||||
# Two queries with same intent but different wording
|
||||
query1 = "Tell me my browser history about some conference i often visit"
|
||||
query2 = "browser history about conference I often visit"
|
||||
|
||||
texts = [query1, query2, conference_text, browser_text]
|
||||
|
||||
|
||||
def cosine_similarity(a, b):
|
||||
return np.dot(a, b) # Already normalized
|
||||
|
||||
|
||||
def analyze_embeddings(embeddings, model_name):
|
||||
print(f"\n=== {model_name} Results ===")
|
||||
|
||||
# Results for Query 1
|
||||
sim1_conf = cosine_similarity(embeddings[0], embeddings[2])
|
||||
sim1_browser = cosine_similarity(embeddings[0], embeddings[3])
|
||||
|
||||
print(f"Query 1: '{query1}'")
|
||||
print(f" → Conference similarity: {sim1_conf:.4f} {'✓' if sim1_conf > sim1_browser else ''}")
|
||||
print(
|
||||
f" → Browser similarity: {sim1_browser:.4f} {'✓' if sim1_browser > sim1_conf else ''}"
|
||||
)
|
||||
print(f" Winner: {'Conference' if sim1_conf > sim1_browser else 'Browser'}")
|
||||
|
||||
# Results for Query 2
|
||||
sim2_conf = cosine_similarity(embeddings[1], embeddings[2])
|
||||
sim2_browser = cosine_similarity(embeddings[1], embeddings[3])
|
||||
|
||||
print(f"\nQuery 2: '{query2}'")
|
||||
print(f" → Conference similarity: {sim2_conf:.4f} {'✓' if sim2_conf > sim2_browser else ''}")
|
||||
print(
|
||||
f" → Browser similarity: {sim2_browser:.4f} {'✓' if sim2_browser > sim2_conf else ''}"
|
||||
)
|
||||
print(f" Winner: {'Conference' if sim2_conf > sim2_browser else 'Browser'}")
|
||||
|
||||
# Show the impact
|
||||
print("\n=== Impact Analysis ===")
|
||||
print(f"Conference similarity change: {sim2_conf - sim1_conf:+.4f}")
|
||||
print(f"Browser similarity change: {sim2_browser - sim1_browser:+.4f}")
|
||||
|
||||
if sim1_conf > sim1_browser and sim2_browser > sim2_conf:
|
||||
print("❌ FLIP: Adding 'browser history' flips winner from Conference to Browser!")
|
||||
elif sim1_conf > sim1_browser and sim2_conf > sim2_browser:
|
||||
print("✅ STABLE: Conference remains winner in both queries")
|
||||
elif sim1_browser > sim1_conf and sim2_browser > sim2_conf:
|
||||
print("✅ STABLE: Browser remains winner in both queries")
|
||||
else:
|
||||
print("🔄 MIXED: Results vary between queries")
|
||||
|
||||
return {
|
||||
"query1_conf": sim1_conf,
|
||||
"query1_browser": sim1_browser,
|
||||
"query2_conf": sim2_conf,
|
||||
"query2_browser": sim2_browser,
|
||||
}
|
||||
|
||||
|
||||
# Test Sentence Transformers
|
||||
print("Testing Sentence Transformers (facebook/contriever)...")
|
||||
try:
|
||||
st_embeddings = compute_embeddings(texts, "facebook/contriever", mode="sentence-transformers")
|
||||
st_results = analyze_embeddings(st_embeddings, "Sentence Transformers (facebook/contriever)")
|
||||
except Exception as e:
|
||||
print(f"❌ Sentence Transformers failed: {e}")
|
||||
st_results = None
|
||||
|
||||
# Test OpenAI
|
||||
print("\n" + "=" * 60)
|
||||
print("Testing OpenAI (text-embedding-3-small)...")
|
||||
try:
|
||||
openai_embeddings = compute_embeddings(texts, "text-embedding-3-small", mode="openai")
|
||||
openai_results = analyze_embeddings(openai_embeddings, "OpenAI (text-embedding-3-small)")
|
||||
except Exception as e:
|
||||
print(f"❌ OpenAI failed: {e}")
|
||||
openai_results = None
|
||||
|
||||
# Compare results
|
||||
if st_results and openai_results:
|
||||
print("\n" + "=" * 60)
|
||||
print("=== COMPARISON SUMMARY ===")
|
||||
@@ -1,11 +0,0 @@
|
||||
# 🤝 Contributing
|
||||
|
||||
We welcome contributions! Leann is built by the community, for the community.
|
||||
|
||||
## Ways to Contribute
|
||||
|
||||
- 🐛 **Bug Reports**: Found an issue? Let us know!
|
||||
- 💡 **Feature Requests**: Have an idea? We'd love to hear it!
|
||||
- 🔧 **Code Contributions**: PRs welcome for all skill levels
|
||||
- 📖 **Documentation**: Help make Leann more accessible
|
||||
- 🧪 **Benchmarks**: Share your performance results
|
||||
75
docs/normalized_embeddings.md
Normal file
75
docs/normalized_embeddings.md
Normal file
@@ -0,0 +1,75 @@
|
||||
# Normalized Embeddings Support in LEANN
|
||||
|
||||
LEANN now automatically detects normalized embedding models and sets the appropriate distance metric for optimal performance.
|
||||
|
||||
## What are Normalized Embeddings?
|
||||
|
||||
Normalized embeddings are vectors with L2 norm = 1 (unit vectors). These embeddings are optimized for cosine similarity rather than Maximum Inner Product Search (MIPS).
|
||||
|
||||
## Automatic Detection
|
||||
|
||||
When you create a `LeannBuilder` instance with a normalized embedding model, LEANN will:
|
||||
|
||||
1. **Automatically set `distance_metric="cosine"`** if not specified
|
||||
2. **Show a warning** if you manually specify a different distance metric
|
||||
3. **Provide optimal search performance** with the correct metric
|
||||
|
||||
## Supported Normalized Embedding Models
|
||||
|
||||
### OpenAI
|
||||
All OpenAI text embedding models are normalized:
|
||||
- `text-embedding-ada-002`
|
||||
- `text-embedding-3-small`
|
||||
- `text-embedding-3-large`
|
||||
|
||||
### Voyage AI
|
||||
All Voyage AI embedding models are normalized:
|
||||
- `voyage-2`
|
||||
- `voyage-3`
|
||||
- `voyage-large-2`
|
||||
- `voyage-multilingual-2`
|
||||
- `voyage-code-2`
|
||||
|
||||
### Cohere
|
||||
All Cohere embedding models are normalized:
|
||||
- `embed-english-v3.0`
|
||||
- `embed-multilingual-v3.0`
|
||||
- `embed-english-light-v3.0`
|
||||
- `embed-multilingual-light-v3.0`
|
||||
|
||||
## Example Usage
|
||||
|
||||
```python
|
||||
from leann.api import LeannBuilder
|
||||
|
||||
# Automatic detection - will use cosine distance
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model="text-embedding-3-small",
|
||||
embedding_mode="openai"
|
||||
)
|
||||
# Warning: Detected normalized embeddings model 'text-embedding-3-small'...
|
||||
# Automatically setting distance_metric='cosine'
|
||||
|
||||
# Manual override (not recommended)
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model="text-embedding-3-small",
|
||||
embedding_mode="openai",
|
||||
distance_metric="mips" # Will show warning
|
||||
)
|
||||
# Warning: Using 'mips' distance metric with normalized embeddings...
|
||||
```
|
||||
|
||||
## Non-Normalized Embeddings
|
||||
|
||||
Models like `facebook/contriever` and other sentence-transformers models that are not normalized will continue to use MIPS by default, which is optimal for them.
|
||||
|
||||
## Why This Matters
|
||||
|
||||
Using the wrong distance metric with normalized embeddings can lead to:
|
||||
- **Poor search quality** due to HNSW's early termination with narrow score ranges
|
||||
- **Incorrect ranking** of search results
|
||||
- **Suboptimal performance** compared to using the correct metric
|
||||
|
||||
For more details on why this happens, see our analysis of [OpenAI embeddings with MIPS](../examples/main_cli_example.py).
|
||||
@@ -14903,5 +14903,3 @@ This website includes information about Project Gutenberg™,
|
||||
including how to make donations to the Project Gutenberg Literary
|
||||
Archive Foundation, how to help produce our new eBooks, and how to
|
||||
subscribe to our email newsletter to hear about new eBooks.
|
||||
|
||||
|
||||
|
||||
@@ -27,7 +27,10 @@ def load_sample_documents():
|
||||
"title": "Intro to Python",
|
||||
"content": "Python is a high-level, interpreted language known for simplicity.",
|
||||
},
|
||||
{"title": "ML Basics", "content": "Machine learning builds systems that learn from data."},
|
||||
{
|
||||
"title": "ML Basics",
|
||||
"content": "Machine learning builds systems that learn from data.",
|
||||
},
|
||||
{
|
||||
"title": "Data Structures",
|
||||
"content": "Data structures like arrays, lists, and graphs organize data.",
|
||||
|
||||
@@ -21,7 +21,11 @@ DEFAULT_CHROME_PROFILE = os.path.expanduser("~/Library/Application Support/Googl
|
||||
|
||||
|
||||
def create_leann_index_from_multiple_chrome_profiles(
|
||||
profile_dirs: list[Path], index_path: str = "chrome_history_index.leann", max_count: int = -1
|
||||
profile_dirs: list[Path],
|
||||
index_path: str = "chrome_history_index.leann",
|
||||
max_count: int = -1,
|
||||
embedding_model: str = "facebook/contriever",
|
||||
embedding_mode: str = "sentence-transformers",
|
||||
):
|
||||
"""
|
||||
Create LEANN index from multiple Chrome profile data sources.
|
||||
@@ -30,6 +34,8 @@ def create_leann_index_from_multiple_chrome_profiles(
|
||||
profile_dirs: List of Path objects pointing to Chrome profile directories
|
||||
index_path: Path to save the LEANN index
|
||||
max_count: Maximum number of history entries to process per profile
|
||||
embedding_model: The embedding model to use
|
||||
embedding_mode: The embedding backend mode
|
||||
"""
|
||||
print("Creating LEANN index from multiple Chrome profile data sources...")
|
||||
|
||||
@@ -104,9 +110,11 @@ def create_leann_index_from_multiple_chrome_profiles(
|
||||
print("\n[PHASE 1] Building Leann index...")
|
||||
|
||||
# Use HNSW backend for better macOS compatibility
|
||||
# LeannBuilder will automatically detect normalized embeddings and set appropriate distance metric
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model="facebook/contriever",
|
||||
embedding_model=embedding_model,
|
||||
embedding_mode=embedding_mode,
|
||||
graph_degree=32,
|
||||
complexity=64,
|
||||
is_compact=True,
|
||||
@@ -130,6 +138,8 @@ def create_leann_index(
|
||||
profile_path: str | None = None,
|
||||
index_path: str = "chrome_history_index.leann",
|
||||
max_count: int = 1000,
|
||||
embedding_model: str = "facebook/contriever",
|
||||
embedding_mode: str = "sentence-transformers",
|
||||
):
|
||||
"""
|
||||
Create LEANN index from Chrome history data.
|
||||
@@ -138,6 +148,8 @@ def create_leann_index(
|
||||
profile_path: Path to the Chrome profile directory (optional, uses default if None)
|
||||
index_path: Path to save the LEANN index
|
||||
max_count: Maximum number of history entries to process
|
||||
embedding_model: The embedding model to use
|
||||
embedding_mode: The embedding backend mode
|
||||
"""
|
||||
print("Creating LEANN index from Chrome history data...")
|
||||
INDEX_DIR = Path(index_path).parent
|
||||
@@ -185,9 +197,11 @@ def create_leann_index(
|
||||
print("\n[PHASE 1] Building Leann index...")
|
||||
|
||||
# Use HNSW backend for better macOS compatibility
|
||||
# LeannBuilder will automatically detect normalized embeddings and set appropriate distance metric
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model="facebook/contriever",
|
||||
embedding_model=embedding_model,
|
||||
embedding_mode=embedding_mode,
|
||||
graph_degree=32,
|
||||
complexity=64,
|
||||
is_compact=True,
|
||||
@@ -271,6 +285,24 @@ async def main():
|
||||
default=True,
|
||||
help="Automatically find all Chrome profiles (default: True)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--embedding-model",
|
||||
type=str,
|
||||
default="facebook/contriever",
|
||||
help="The embedding model to use (e.g., 'facebook/contriever', 'text-embedding-3-small')",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--embedding-mode",
|
||||
type=str,
|
||||
default="sentence-transformers",
|
||||
choices=["sentence-transformers", "openai", "mlx"],
|
||||
help="The embedding backend mode",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use-existing-index",
|
||||
action="store_true",
|
||||
help="Use existing index without rebuilding",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
@@ -281,26 +313,34 @@ async def main():
|
||||
print(f"Index directory: {INDEX_DIR}")
|
||||
print(f"Max entries: {args.max_entries}")
|
||||
|
||||
# Find Chrome profile directories
|
||||
from history_data.history import ChromeHistoryReader
|
||||
|
||||
if args.auto_find_profiles:
|
||||
profile_dirs = ChromeHistoryReader.find_chrome_profiles()
|
||||
if not profile_dirs:
|
||||
print("No Chrome profiles found automatically. Exiting.")
|
||||
if args.use_existing_index:
|
||||
# Use existing index without rebuilding
|
||||
if not Path(INDEX_PATH).exists():
|
||||
print(f"Error: Index file not found at {INDEX_PATH}")
|
||||
return
|
||||
print(f"Using existing index at {INDEX_PATH}")
|
||||
index_path = INDEX_PATH
|
||||
else:
|
||||
# Use single specified profile
|
||||
profile_path = Path(args.chrome_profile)
|
||||
if not profile_path.exists():
|
||||
print(f"Chrome profile not found: {profile_path}")
|
||||
return
|
||||
profile_dirs = [profile_path]
|
||||
# Find Chrome profile directories
|
||||
from history_data.history import ChromeHistoryReader
|
||||
|
||||
# Create or load the LEANN index from all sources
|
||||
index_path = create_leann_index_from_multiple_chrome_profiles(
|
||||
profile_dirs, INDEX_PATH, args.max_entries
|
||||
)
|
||||
if args.auto_find_profiles:
|
||||
profile_dirs = ChromeHistoryReader.find_chrome_profiles()
|
||||
if not profile_dirs:
|
||||
print("No Chrome profiles found automatically. Exiting.")
|
||||
return
|
||||
else:
|
||||
# Use single specified profile
|
||||
profile_path = Path(args.chrome_profile)
|
||||
if not profile_path.exists():
|
||||
print(f"Chrome profile not found: {profile_path}")
|
||||
return
|
||||
profile_dirs = [profile_path]
|
||||
|
||||
# Create or load the LEANN index from all sources
|
||||
index_path = create_leann_index_from_multiple_chrome_profiles(
|
||||
profile_dirs, INDEX_PATH, args.max_entries, args.embedding_model, args.embedding_mode
|
||||
)
|
||||
|
||||
if index_path:
|
||||
if args.query:
|
||||
|
||||
@@ -474,7 +474,8 @@ Messages ({len(messages)} messages, {message_group["total_length"]} chars):
|
||||
message_group, contact_name
|
||||
)
|
||||
doc = Document(
|
||||
text=doc_content, metadata={"contact_name": contact_name}
|
||||
text=doc_content,
|
||||
metadata={"contact_name": contact_name},
|
||||
)
|
||||
docs.append(doc)
|
||||
count += 1
|
||||
|
||||
@@ -315,7 +315,11 @@ async def main():
|
||||
|
||||
# Create or load the LEANN index from all sources
|
||||
index_path = create_leann_index_from_multiple_sources(
|
||||
messages_dirs, INDEX_PATH, args.max_emails, args.include_html, args.embedding_model
|
||||
messages_dirs,
|
||||
INDEX_PATH,
|
||||
args.max_emails,
|
||||
args.include_html,
|
||||
args.embedding_model,
|
||||
)
|
||||
|
||||
if index_path:
|
||||
|
||||
@@ -92,7 +92,10 @@ def main():
|
||||
help="Directory to store the index (default: mail_index_embedded)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-emails", type=int, default=10000, help="Maximum number of emails to process"
|
||||
"--max-emails",
|
||||
type=int,
|
||||
default=10000,
|
||||
help="Maximum number of emails to process",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--include-html",
|
||||
@@ -112,7 +115,10 @@ def main():
|
||||
else:
|
||||
print("Creating new index...")
|
||||
index = create_and_save_index(
|
||||
mail_path, save_dir, max_count=args.max_emails, include_html=args.include_html
|
||||
mail_path,
|
||||
save_dir,
|
||||
max_count=args.max_emails,
|
||||
include_html=args.include_html,
|
||||
)
|
||||
if index:
|
||||
queries = [
|
||||
|
||||
@@ -30,17 +30,22 @@ async def main(args):
|
||||
all_texts = []
|
||||
for doc in documents:
|
||||
nodes = node_parser.get_nodes_from_documents([doc])
|
||||
for node in nodes:
|
||||
all_texts.append(node.get_content())
|
||||
if nodes:
|
||||
all_texts.extend(node.get_content() for node in nodes)
|
||||
|
||||
print("--- Index directory not found, building new index ---")
|
||||
|
||||
print("\n[PHASE 1] Building Leann index...")
|
||||
|
||||
# LeannBuilder now automatically detects normalized embeddings and sets appropriate distance metric
|
||||
print(f"Using {args.embedding_model} with {args.embedding_mode} mode")
|
||||
|
||||
# Use HNSW backend for better macOS compatibility
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model="facebook/contriever",
|
||||
embedding_model=args.embedding_model,
|
||||
embedding_mode=args.embedding_mode,
|
||||
# distance_metric is automatically set based on embedding model
|
||||
graph_degree=32,
|
||||
complexity=64,
|
||||
is_compact=True,
|
||||
@@ -59,9 +64,19 @@ async def main(args):
|
||||
|
||||
print("\n[PHASE 2] Starting Leann chat session...")
|
||||
|
||||
llm_config = {"type": "hf", "model": "Qwen/Qwen3-4B"}
|
||||
llm_config = {"type": "ollama", "model": "qwen3:8b"}
|
||||
llm_config = {"type": "openai", "model": "gpt-4o"}
|
||||
# Build llm_config based on command line arguments
|
||||
if args.llm == "simulated":
|
||||
llm_config = {"type": "simulated"}
|
||||
elif args.llm == "ollama":
|
||||
llm_config = {"type": "ollama", "model": args.model, "host": args.host}
|
||||
elif args.llm == "hf":
|
||||
llm_config = {"type": "hf", "model": args.model}
|
||||
elif args.llm == "openai":
|
||||
llm_config = {"type": "openai", "model": args.model}
|
||||
else:
|
||||
raise ValueError(f"Unknown LLM type: {args.llm}")
|
||||
|
||||
print(f"Using LLM: {args.llm} with model: {args.model if args.llm != 'simulated' else 'N/A'}")
|
||||
|
||||
chat = LeannChat(index_path=INDEX_PATH, llm_config=llm_config)
|
||||
# query = (
|
||||
@@ -79,16 +94,29 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"--llm",
|
||||
type=str,
|
||||
default="hf",
|
||||
default="openai",
|
||||
choices=["simulated", "ollama", "hf", "openai"],
|
||||
help="The LLM backend to use.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
type=str,
|
||||
default="Qwen/Qwen3-0.6B",
|
||||
default="gpt-4o",
|
||||
help="The model name to use (e.g., 'llama3:8b' for ollama, 'deepseek-ai/deepseek-llm-7b-chat' for hf, 'gpt-4o' for openai).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--embedding-model",
|
||||
type=str,
|
||||
default="facebook/contriever",
|
||||
help="The embedding model to use (e.g., 'facebook/contriever', 'text-embedding-3-small').",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--embedding-mode",
|
||||
type=str,
|
||||
default="sentence-transformers",
|
||||
choices=["sentence-transformers", "openai", "mlx"],
|
||||
help="The embedding backend mode.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--host",
|
||||
type=str,
|
||||
|
||||
@@ -347,7 +347,9 @@ def demo_aggregation():
|
||||
print(f"\n{'=' * 20} {method.upper()} AGGREGATION {'=' * 20}")
|
||||
|
||||
aggregator = MultiVectorAggregator(
|
||||
aggregation_method=method, spatial_clustering=True, cluster_distance_threshold=100.0
|
||||
aggregation_method=method,
|
||||
spatial_clustering=True,
|
||||
cluster_distance_threshold=100.0,
|
||||
)
|
||||
|
||||
aggregated = aggregator.aggregate_results(mock_results, top_k=5)
|
||||
|
||||
@@ -1 +0,0 @@
|
||||
|
||||
|
||||
@@ -7,6 +7,7 @@ from pathlib import Path
|
||||
from typing import Any, Literal
|
||||
|
||||
import numpy as np
|
||||
import psutil
|
||||
from leann.interface import (
|
||||
LeannBackendBuilderInterface,
|
||||
LeannBackendFactoryInterface,
|
||||
@@ -84,6 +85,43 @@ def _write_vectors_to_bin(data: np.ndarray, file_path: Path):
|
||||
f.write(data.tobytes())
|
||||
|
||||
|
||||
def _calculate_smart_memory_config(data: np.ndarray) -> tuple[float, float]:
|
||||
"""
|
||||
Calculate smart memory configuration for DiskANN based on data size and system specs.
|
||||
|
||||
Args:
|
||||
data: The embedding data array
|
||||
|
||||
Returns:
|
||||
tuple: (search_memory_maximum, build_memory_maximum) in GB
|
||||
"""
|
||||
num_vectors, dim = data.shape
|
||||
|
||||
# Calculate embedding storage size
|
||||
embedding_size_bytes = num_vectors * dim * 4 # float32 = 4 bytes
|
||||
embedding_size_gb = embedding_size_bytes / (1024**3)
|
||||
|
||||
# search_memory_maximum: 1/10 of embedding size for optimal PQ compression
|
||||
# This controls Product Quantization size - smaller means more compression
|
||||
search_memory_gb = max(0.1, embedding_size_gb / 10) # At least 100MB
|
||||
|
||||
# build_memory_maximum: Based on available system RAM for sharding control
|
||||
# This controls how much memory DiskANN uses during index construction
|
||||
available_memory_gb = psutil.virtual_memory().available / (1024**3)
|
||||
total_memory_gb = psutil.virtual_memory().total / (1024**3)
|
||||
|
||||
# Use 50% of available memory, but at least 2GB and at most 75% of total
|
||||
build_memory_gb = max(2.0, min(available_memory_gb * 0.5, total_memory_gb * 0.75))
|
||||
|
||||
logger.info(
|
||||
f"Smart memory config - Data: {embedding_size_gb:.2f}GB, "
|
||||
f"Search mem: {search_memory_gb:.2f}GB (PQ control), "
|
||||
f"Build mem: {build_memory_gb:.2f}GB (sharding control)"
|
||||
)
|
||||
|
||||
return search_memory_gb, build_memory_gb
|
||||
|
||||
|
||||
@register_backend("diskann")
|
||||
class DiskannBackend(LeannBackendFactoryInterface):
|
||||
@staticmethod
|
||||
@@ -121,6 +159,16 @@ class DiskannBuilder(LeannBackendBuilderInterface):
|
||||
f"Unsupported distance_metric '{build_kwargs.get('distance_metric', 'unknown')}'."
|
||||
)
|
||||
|
||||
# Calculate smart memory configuration if not explicitly provided
|
||||
if (
|
||||
"search_memory_maximum" not in build_kwargs
|
||||
or "build_memory_maximum" not in build_kwargs
|
||||
):
|
||||
smart_search_mem, smart_build_mem = _calculate_smart_memory_config(data)
|
||||
else:
|
||||
smart_search_mem = build_kwargs.get("search_memory_maximum", 4.0)
|
||||
smart_build_mem = build_kwargs.get("build_memory_maximum", 8.0)
|
||||
|
||||
try:
|
||||
from . import _diskannpy as diskannpy # type: ignore
|
||||
|
||||
@@ -131,8 +179,8 @@ class DiskannBuilder(LeannBackendBuilderInterface):
|
||||
index_prefix,
|
||||
build_kwargs.get("complexity", 64),
|
||||
build_kwargs.get("graph_degree", 32),
|
||||
build_kwargs.get("search_memory_maximum", 4.0),
|
||||
build_kwargs.get("build_memory_maximum", 8.0),
|
||||
build_kwargs.get("search_memory_maximum", smart_search_mem),
|
||||
build_kwargs.get("build_memory_maximum", smart_build_mem),
|
||||
build_kwargs.get("num_threads", 8),
|
||||
build_kwargs.get("pq_disk_bytes", 0),
|
||||
"",
|
||||
@@ -163,18 +211,44 @@ class DiskannSearcher(BaseSearcher):
|
||||
|
||||
self.num_threads = kwargs.get("num_threads", 8)
|
||||
|
||||
fake_zmq_port = 6666
|
||||
# For DiskANN, we need to reinitialize the index when zmq_port changes
|
||||
# Store the initialization parameters for later use
|
||||
full_index_prefix = str(self.index_dir / self.index_path.stem)
|
||||
self._index = diskannpy.StaticDiskFloatIndex(
|
||||
metric_enum,
|
||||
full_index_prefix,
|
||||
self.num_threads,
|
||||
kwargs.get("num_nodes_to_cache", 0),
|
||||
1,
|
||||
fake_zmq_port, # Initial port, can be updated at runtime
|
||||
"",
|
||||
"",
|
||||
)
|
||||
self._init_params = {
|
||||
"metric_enum": metric_enum,
|
||||
"full_index_prefix": full_index_prefix,
|
||||
"num_threads": self.num_threads,
|
||||
"num_nodes_to_cache": kwargs.get("num_nodes_to_cache", 0),
|
||||
"cache_mechanism": 1,
|
||||
"pq_prefix": "",
|
||||
"partition_prefix": "",
|
||||
}
|
||||
self._diskannpy = diskannpy
|
||||
self._current_zmq_port = None
|
||||
self._index = None
|
||||
logger.debug("DiskANN searcher initialized (index will be loaded on first search)")
|
||||
|
||||
def _ensure_index_loaded(self, zmq_port: int):
|
||||
"""Ensure the index is loaded with the correct zmq_port."""
|
||||
if self._index is None or self._current_zmq_port != zmq_port:
|
||||
# Need to (re)load the index with the correct zmq_port
|
||||
with suppress_cpp_output_if_needed():
|
||||
if self._index is not None:
|
||||
logger.debug(f"Reloading DiskANN index with new zmq_port: {zmq_port}")
|
||||
else:
|
||||
logger.debug(f"Loading DiskANN index with zmq_port: {zmq_port}")
|
||||
|
||||
self._index = self._diskannpy.StaticDiskFloatIndex(
|
||||
self._init_params["metric_enum"],
|
||||
self._init_params["full_index_prefix"],
|
||||
self._init_params["num_threads"],
|
||||
self._init_params["num_nodes_to_cache"],
|
||||
self._init_params["cache_mechanism"],
|
||||
zmq_port,
|
||||
self._init_params["pq_prefix"],
|
||||
self._init_params["partition_prefix"],
|
||||
)
|
||||
self._current_zmq_port = zmq_port
|
||||
|
||||
def search(
|
||||
self,
|
||||
@@ -212,14 +286,15 @@ class DiskannSearcher(BaseSearcher):
|
||||
Returns:
|
||||
Dict with 'labels' (list of lists) and 'distances' (ndarray)
|
||||
"""
|
||||
# Handle zmq_port compatibility: DiskANN can now update port at runtime
|
||||
# Handle zmq_port compatibility: Ensure index is loaded with correct port
|
||||
if recompute_embeddings:
|
||||
if zmq_port is None:
|
||||
raise ValueError("zmq_port must be provided if recompute_embeddings is True")
|
||||
current_port = self._index.get_zmq_port()
|
||||
if zmq_port != current_port:
|
||||
logger.debug(f"Updating DiskANN zmq_port from {current_port} to {zmq_port}")
|
||||
self._index.set_zmq_port(zmq_port)
|
||||
self._ensure_index_loaded(zmq_port)
|
||||
else:
|
||||
# If not recomputing, we still need an index, use a default port
|
||||
if self._index is None:
|
||||
self._ensure_index_loaded(6666) # Default port when not recomputing
|
||||
|
||||
# DiskANN doesn't support "proportional" strategy
|
||||
if pruning_strategy == "proportional":
|
||||
|
||||
@@ -36,6 +36,7 @@ def create_diskann_embedding_server(
|
||||
zmq_port: int = 5555,
|
||||
model_name: str = "sentence-transformers/all-mpnet-base-v2",
|
||||
embedding_mode: str = "sentence-transformers",
|
||||
distance_metric: str = "l2",
|
||||
):
|
||||
"""
|
||||
Create and start a ZMQ-based embedding server for DiskANN backend.
|
||||
@@ -263,6 +264,13 @@ if __name__ == "__main__":
|
||||
choices=["sentence-transformers", "openai", "mlx"],
|
||||
help="Embedding backend mode",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--distance-metric",
|
||||
type=str,
|
||||
default="l2",
|
||||
choices=["l2", "mips", "cosine"],
|
||||
help="Distance metric for similarity computation",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
@@ -272,4 +280,5 @@ if __name__ == "__main__":
|
||||
zmq_port=args.zmq_port,
|
||||
model_name=args.model_name,
|
||||
embedding_mode=args.embedding_mode,
|
||||
distance_metric=args.distance_metric,
|
||||
)
|
||||
|
||||
@@ -4,8 +4,8 @@ build-backend = "scikit_build_core.build"
|
||||
|
||||
[project]
|
||||
name = "leann-backend-diskann"
|
||||
version = "0.1.14"
|
||||
dependencies = ["leann-core==0.1.14", "numpy", "protobuf>=3.19.0"]
|
||||
version = "0.1.16"
|
||||
dependencies = ["leann-core==0.1.16", "numpy", "protobuf>=3.19.0"]
|
||||
|
||||
[tool.scikit-build]
|
||||
# Key: simplified CMake path
|
||||
|
||||
Submodule packages/leann-backend-diskann/third_party/DiskANN updated: af2a26481e...67a2611ad1
@@ -10,6 +10,14 @@ if(APPLE)
|
||||
set(OpenMP_C_LIB_NAMES "omp")
|
||||
set(OpenMP_CXX_LIB_NAMES "omp")
|
||||
set(OpenMP_omp_LIBRARY "/opt/homebrew/opt/libomp/lib/libomp.dylib")
|
||||
|
||||
# Force use of system libc++ to avoid version mismatch
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -stdlib=libc++")
|
||||
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -stdlib=libc++")
|
||||
set(CMAKE_SHARED_LINKER_FLAGS "${CMAKE_SHARED_LINKER_FLAGS} -stdlib=libc++")
|
||||
|
||||
# Set minimum macOS version for better compatibility
|
||||
set(CMAKE_OSX_DEPLOYMENT_TARGET "11.0" CACHE STRING "Minimum macOS version")
|
||||
endif()
|
||||
|
||||
# Use system ZeroMQ instead of building from source
|
||||
|
||||
@@ -72,7 +72,11 @@ def read_vector_raw(f, element_fmt_char):
|
||||
def read_numpy_vector(f, np_dtype, struct_fmt_char):
|
||||
"""Reads a vector into a NumPy array."""
|
||||
count = -1 # Initialize count for robust error handling
|
||||
print(f" Reading vector (dtype={np_dtype}, fmt='{struct_fmt_char}')... ", end="", flush=True)
|
||||
print(
|
||||
f" Reading vector (dtype={np_dtype}, fmt='{struct_fmt_char}')... ",
|
||||
end="",
|
||||
flush=True,
|
||||
)
|
||||
try:
|
||||
count, data_bytes = read_vector_raw(f, struct_fmt_char)
|
||||
print(f"Count={count}, Bytes={len(data_bytes)}")
|
||||
@@ -647,7 +651,10 @@ def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=
|
||||
print(f"Error: Input file not found: {input_filename}", file=sys.stderr)
|
||||
return False
|
||||
except MemoryError as e:
|
||||
print(f"\nFatal MemoryError during conversion: {e}. Insufficient RAM.", file=sys.stderr)
|
||||
print(
|
||||
f"\nFatal MemoryError during conversion: {e}. Insufficient RAM.",
|
||||
file=sys.stderr,
|
||||
)
|
||||
# Clean up potentially partially written output file?
|
||||
try:
|
||||
os.remove(output_filename)
|
||||
|
||||
@@ -28,6 +28,12 @@ def get_metric_map():
|
||||
}
|
||||
|
||||
|
||||
def normalize_l2(data: np.ndarray) -> np.ndarray:
|
||||
norms = np.linalg.norm(data, axis=1, keepdims=True)
|
||||
norms[norms == 0] = 1 # Avoid division by zero
|
||||
return data / norms
|
||||
|
||||
|
||||
@register_backend("hnsw")
|
||||
class HNSWBackend(LeannBackendFactoryInterface):
|
||||
@staticmethod
|
||||
@@ -76,7 +82,7 @@ class HNSWBuilder(LeannBackendBuilderInterface):
|
||||
index.hnsw.efConstruction = self.efConstruction
|
||||
|
||||
if self.distance_metric.lower() == "cosine":
|
||||
faiss.normalize_L2(data)
|
||||
data = normalize_l2(data)
|
||||
|
||||
index.add(data.shape[0], faiss.swig_ptr(data))
|
||||
index_file = index_dir / f"{index_prefix}.index"
|
||||
@@ -118,7 +124,9 @@ class HNSWSearcher(BaseSearcher):
|
||||
)
|
||||
from . import faiss # type: ignore
|
||||
|
||||
self.distance_metric = self.meta.get("distance_metric", "mips").lower()
|
||||
self.distance_metric = (
|
||||
self.meta.get("backend_kwargs", {}).get("distance_metric", "mips").lower()
|
||||
)
|
||||
metric_enum = get_metric_map().get(self.distance_metric)
|
||||
if metric_enum is None:
|
||||
raise ValueError(f"Unsupported distance_metric '{self.distance_metric}'.")
|
||||
@@ -186,7 +194,7 @@ class HNSWSearcher(BaseSearcher):
|
||||
if query.dtype != np.float32:
|
||||
query = query.astype(np.float32)
|
||||
if self.distance_metric == "cosine":
|
||||
faiss.normalize_L2(query)
|
||||
query = normalize_l2(query)
|
||||
|
||||
params = faiss.SearchParametersHNSW()
|
||||
if zmq_port is not None:
|
||||
@@ -194,6 +202,16 @@ class HNSWSearcher(BaseSearcher):
|
||||
params.efSearch = complexity
|
||||
params.beam_size = beam_width
|
||||
|
||||
# For OpenAI embeddings with cosine distance, disable relative distance check
|
||||
# This prevents early termination when all scores are in a narrow range
|
||||
embedding_model = self.meta.get("embedding_model", "").lower()
|
||||
if self.distance_metric == "cosine" and any(
|
||||
openai_model in embedding_model for openai_model in ["text-embedding", "openai"]
|
||||
):
|
||||
params.check_relative_distance = False
|
||||
else:
|
||||
params.check_relative_distance = True
|
||||
|
||||
# PQ pruning: direct mapping to HNSW's pq_pruning_ratio
|
||||
params.pq_pruning_ratio = prune_ratio
|
||||
|
||||
|
||||
@@ -6,10 +6,10 @@ build-backend = "scikit_build_core.build"
|
||||
|
||||
[project]
|
||||
name = "leann-backend-hnsw"
|
||||
version = "0.1.14"
|
||||
version = "0.1.16"
|
||||
description = "Custom-built HNSW (Faiss) backend for the Leann toolkit."
|
||||
dependencies = [
|
||||
"leann-core==0.1.14",
|
||||
"leann-core==0.1.16",
|
||||
"numpy",
|
||||
"pyzmq>=23.0.0",
|
||||
"msgpack>=1.0.0",
|
||||
|
||||
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "leann-core"
|
||||
version = "0.1.14"
|
||||
version = "0.1.16"
|
||||
description = "Core API and plugin system for LEANN"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.9"
|
||||
|
||||
@@ -8,6 +8,10 @@ if platform.system() == "Darwin":
|
||||
os.environ["MKL_NUM_THREADS"] = "1"
|
||||
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
|
||||
os.environ["KMP_BLOCKTIME"] = "0"
|
||||
# Additional fixes for PyTorch/sentence-transformers on macOS ARM64 only in CI
|
||||
if os.environ.get("CI") == "true":
|
||||
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "0"
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
|
||||
from .api import LeannBuilder, LeannChat, LeannSearcher
|
||||
from .registry import BACKEND_REGISTRY, autodiscover_backends
|
||||
|
||||
@@ -7,6 +7,7 @@ import json
|
||||
import logging
|
||||
import pickle
|
||||
import time
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from pathlib import Path
|
||||
from typing import Any, Literal
|
||||
@@ -22,6 +23,11 @@ from .registry import BACKEND_REGISTRY
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def get_registered_backends() -> list[str]:
|
||||
"""Get list of registered backend names."""
|
||||
return list(BACKEND_REGISTRY.keys())
|
||||
|
||||
|
||||
def compute_embeddings(
|
||||
chunks: list[str],
|
||||
model_name: str,
|
||||
@@ -163,6 +169,76 @@ class LeannBuilder:
|
||||
self.embedding_model = embedding_model
|
||||
self.dimensions = dimensions
|
||||
self.embedding_mode = embedding_mode
|
||||
|
||||
# Check if we need to use cosine distance for normalized embeddings
|
||||
normalized_embeddings_models = {
|
||||
# OpenAI models
|
||||
("openai", "text-embedding-ada-002"),
|
||||
("openai", "text-embedding-3-small"),
|
||||
("openai", "text-embedding-3-large"),
|
||||
# Voyage AI models
|
||||
("voyage", "voyage-2"),
|
||||
("voyage", "voyage-3"),
|
||||
("voyage", "voyage-large-2"),
|
||||
("voyage", "voyage-multilingual-2"),
|
||||
("voyage", "voyage-code-2"),
|
||||
# Cohere models
|
||||
("cohere", "embed-english-v3.0"),
|
||||
("cohere", "embed-multilingual-v3.0"),
|
||||
("cohere", "embed-english-light-v3.0"),
|
||||
("cohere", "embed-multilingual-light-v3.0"),
|
||||
}
|
||||
|
||||
# Also check for patterns in model names
|
||||
is_normalized = False
|
||||
current_model_lower = embedding_model.lower()
|
||||
current_mode_lower = embedding_mode.lower()
|
||||
|
||||
# Check exact matches
|
||||
for mode, model in normalized_embeddings_models:
|
||||
if (current_mode_lower == mode and current_model_lower == model) or (
|
||||
mode in current_mode_lower and model in current_model_lower
|
||||
):
|
||||
is_normalized = True
|
||||
break
|
||||
|
||||
# Check patterns
|
||||
if not is_normalized:
|
||||
# OpenAI patterns
|
||||
if "openai" in current_mode_lower or "openai" in current_model_lower:
|
||||
if any(
|
||||
pattern in current_model_lower
|
||||
for pattern in ["text-embedding", "ada", "3-small", "3-large"]
|
||||
):
|
||||
is_normalized = True
|
||||
# Voyage patterns
|
||||
elif "voyage" in current_mode_lower or "voyage" in current_model_lower:
|
||||
is_normalized = True
|
||||
# Cohere patterns
|
||||
elif "cohere" in current_mode_lower or "cohere" in current_model_lower:
|
||||
if "embed" in current_model_lower:
|
||||
is_normalized = True
|
||||
|
||||
# Handle distance metric
|
||||
if is_normalized and "distance_metric" not in backend_kwargs:
|
||||
backend_kwargs["distance_metric"] = "cosine"
|
||||
warnings.warn(
|
||||
f"Detected normalized embeddings model '{embedding_model}' with mode '{embedding_mode}'. "
|
||||
f"Automatically setting distance_metric='cosine' for optimal performance. "
|
||||
f"Normalized embeddings (L2 norm = 1) should use cosine similarity instead of MIPS.",
|
||||
UserWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
elif is_normalized and backend_kwargs.get("distance_metric", "").lower() != "cosine":
|
||||
current_metric = backend_kwargs.get("distance_metric", "mips")
|
||||
warnings.warn(
|
||||
f"Warning: Using '{current_metric}' distance metric with normalized embeddings model "
|
||||
f"'{embedding_model}' may lead to suboptimal search results. "
|
||||
f"Consider using 'cosine' distance metric for better performance.",
|
||||
UserWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
|
||||
self.backend_kwargs = backend_kwargs
|
||||
self.chunks: list[dict[str, Any]] = []
|
||||
|
||||
|
||||
@@ -245,7 +245,11 @@ def search_hf_models_fuzzy(query: str, limit: int = 10) -> list[str]:
|
||||
|
||||
# HF Hub's search is already fuzzy! It handles typos and partial matches
|
||||
models = list_models(
|
||||
search=query, filter="text-generation", sort="downloads", direction=-1, limit=limit
|
||||
search=query,
|
||||
filter="text-generation",
|
||||
sort="downloads",
|
||||
direction=-1,
|
||||
limit=limit,
|
||||
)
|
||||
|
||||
model_names = [model.id if hasattr(model, "id") else str(model) for model in models]
|
||||
@@ -538,14 +542,41 @@ class HFChat(LLMInterface):
|
||||
self.device = "cpu"
|
||||
logger.info("No GPU detected. Using CPU.")
|
||||
|
||||
# Load tokenizer and model
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
torch_dtype=torch.float16 if self.device != "cpu" else torch.float32,
|
||||
device_map="auto" if self.device != "cpu" else None,
|
||||
trust_remote_code=True,
|
||||
)
|
||||
# Load tokenizer and model with timeout protection
|
||||
try:
|
||||
import signal
|
||||
|
||||
def timeout_handler(signum, frame):
|
||||
raise TimeoutError("Model download/loading timed out")
|
||||
|
||||
# Set timeout for model loading (60 seconds)
|
||||
old_handler = signal.signal(signal.SIGALRM, timeout_handler)
|
||||
signal.alarm(60)
|
||||
|
||||
try:
|
||||
logger.info(f"Loading tokenizer for {model_name}...")
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
|
||||
logger.info(f"Loading model {model_name}...")
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
torch_dtype=torch.float16 if self.device != "cpu" else torch.float32,
|
||||
device_map="auto" if self.device != "cpu" else None,
|
||||
trust_remote_code=True,
|
||||
)
|
||||
logger.info(f"Successfully loaded {model_name}")
|
||||
finally:
|
||||
signal.alarm(0) # Cancel the alarm
|
||||
signal.signal(signal.SIGALRM, old_handler) # Restore old handler
|
||||
|
||||
except TimeoutError:
|
||||
logger.error(f"Model loading timed out for {model_name}")
|
||||
raise RuntimeError(
|
||||
f"Model loading timed out for {model_name}. Please check your internet connection or try a smaller model."
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to load model {model_name}: {e}")
|
||||
raise
|
||||
|
||||
# Move model to device if not using device_map
|
||||
if self.device != "cpu" and "device_map" not in str(self.model):
|
||||
@@ -582,7 +613,11 @@ class HFChat(LLMInterface):
|
||||
|
||||
# Tokenize input
|
||||
inputs = self.tokenizer(
|
||||
formatted_prompt, return_tensors="pt", padding=True, truncation=True, max_length=2048
|
||||
formatted_prompt,
|
||||
return_tensors="pt",
|
||||
padding=True,
|
||||
truncation=True,
|
||||
max_length=2048,
|
||||
)
|
||||
|
||||
# Move inputs to device
|
||||
|
||||
@@ -293,6 +293,8 @@ class EmbeddingServerManager:
|
||||
command.extend(["--passages-file", str(passages_file)])
|
||||
if embedding_mode != "sentence-transformers":
|
||||
command.extend(["--embedding-mode", embedding_mode])
|
||||
if kwargs.get("distance_metric"):
|
||||
command.extend(["--distance-metric", kwargs["distance_metric"]])
|
||||
|
||||
return command
|
||||
|
||||
@@ -352,13 +354,21 @@ class EmbeddingServerManager:
|
||||
self.server_process.terminate()
|
||||
|
||||
try:
|
||||
self.server_process.wait(timeout=5)
|
||||
self.server_process.wait(timeout=3)
|
||||
logger.info(f"Server process {self.server_process.pid} terminated.")
|
||||
except subprocess.TimeoutExpired:
|
||||
logger.warning(
|
||||
f"Server process {self.server_process.pid} did not terminate gracefully, killing it."
|
||||
f"Server process {self.server_process.pid} did not terminate gracefully within 3 seconds, killing it."
|
||||
)
|
||||
self.server_process.kill()
|
||||
try:
|
||||
self.server_process.wait(timeout=2)
|
||||
logger.info(f"Server process {self.server_process.pid} killed successfully.")
|
||||
except subprocess.TimeoutExpired:
|
||||
logger.error(
|
||||
f"Failed to kill server process {self.server_process.pid} - it may be hung"
|
||||
)
|
||||
# Don't hang indefinitely
|
||||
|
||||
# Clean up process resources to prevent resource tracker warnings
|
||||
try:
|
||||
|
||||
@@ -63,12 +63,19 @@ class BaseSearcher(LeannBackendSearcherInterface, ABC):
|
||||
if not self.embedding_model:
|
||||
raise ValueError("Cannot use recompute mode without 'embedding_model' in meta.json.")
|
||||
|
||||
# Get distance_metric from meta if not provided in kwargs
|
||||
distance_metric = (
|
||||
kwargs.get("distance_metric")
|
||||
or self.meta.get("backend_kwargs", {}).get("distance_metric")
|
||||
or "mips"
|
||||
)
|
||||
|
||||
server_started, actual_port = self.embedding_server_manager.start_server(
|
||||
port=port,
|
||||
model_name=self.embedding_model,
|
||||
embedding_mode=self.embedding_mode,
|
||||
passages_file=passages_source_file,
|
||||
distance_metric=kwargs.get("distance_metric"),
|
||||
distance_metric=distance_metric,
|
||||
enable_warmup=kwargs.get("enable_warmup", False),
|
||||
)
|
||||
if not server_started:
|
||||
|
||||
@@ -5,36 +5,32 @@ LEANN is a revolutionary vector database that democratizes personal AI. Transfor
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
# Default installation (HNSW backend, recommended)
|
||||
# Default installation (includes both HNSW and DiskANN backends)
|
||||
uv pip install leann
|
||||
|
||||
# With DiskANN backend (for large-scale deployments)
|
||||
uv pip install leann[diskann]
|
||||
```
|
||||
|
||||
## Quick Start
|
||||
|
||||
```python
|
||||
from leann import LeannBuilder, LeannSearcher, LeannChat
|
||||
from pathlib import Path
|
||||
INDEX_PATH = str(Path("./").resolve() / "demo.leann")
|
||||
|
||||
# Build an index
|
||||
builder = LeannBuilder(backend_name="hnsw")
|
||||
# Build an index (choose backend: "hnsw" or "diskann")
|
||||
builder = LeannBuilder(backend_name="hnsw") # or "diskann" for large-scale deployments
|
||||
builder.add_text("LEANN saves 97% storage compared to traditional vector databases.")
|
||||
builder.build_index("my_index.leann")
|
||||
builder.add_text("Tung Tung Tung Sahur called—they need their banana‑crocodile hybrid back")
|
||||
builder.build_index(INDEX_PATH)
|
||||
|
||||
# Search
|
||||
searcher = LeannSearcher("my_index.leann")
|
||||
results = searcher.search("storage savings", top_k=3)
|
||||
searcher = LeannSearcher(INDEX_PATH)
|
||||
results = searcher.search("fantastical AI-generated creatures", top_k=1)
|
||||
|
||||
# Chat with your data
|
||||
chat = LeannChat("my_index.leann", llm_config={"type": "ollama", "model": "llama3.2:1b"})
|
||||
response = chat.ask("How much storage does LEANN save?")
|
||||
chat = LeannChat(INDEX_PATH, llm_config={"type": "hf", "model": "Qwen/Qwen3-0.6B"})
|
||||
response = chat.ask("How much storage does LEANN save?", top_k=1)
|
||||
```
|
||||
|
||||
## Documentation
|
||||
|
||||
For full documentation, visit [https://leann.readthedocs.io](https://leann.readthedocs.io)
|
||||
|
||||
## License
|
||||
|
||||
MIT License
|
||||
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "leann"
|
||||
version = "0.1.14"
|
||||
version = "0.1.16"
|
||||
description = "LEANN - The smallest vector index in the world. RAG Everything with LEANN!"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.9"
|
||||
@@ -24,19 +24,16 @@ classifiers = [
|
||||
"Programming Language :: Python :: 3.12",
|
||||
]
|
||||
|
||||
# Default installation: core + hnsw
|
||||
# Default installation: core + hnsw + diskann
|
||||
dependencies = [
|
||||
"leann-core>=0.1.0",
|
||||
"leann-backend-hnsw>=0.1.0",
|
||||
]
|
||||
|
||||
[project.optional-dependencies]
|
||||
diskann = [
|
||||
"leann-backend-diskann>=0.1.0",
|
||||
]
|
||||
|
||||
[project.optional-dependencies]
|
||||
# All backends now included by default
|
||||
|
||||
[project.urls]
|
||||
Homepage = "https://github.com/yourusername/leann"
|
||||
Documentation = "https://leann.readthedocs.io"
|
||||
Repository = "https://github.com/yourusername/leann"
|
||||
Issues = "https://github.com/yourusername/leann/issues"
|
||||
Repository = "https://github.com/yichuan-w/LEANN"
|
||||
Issues = "https://github.com/yichuan-w/LEANN/issues"
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import json
|
||||
import sqlite3
|
||||
import xml.etree.ElementTree as ET
|
||||
import xml.etree.ElementTree as ElementTree
|
||||
from pathlib import Path
|
||||
from typing import Annotated
|
||||
|
||||
@@ -26,7 +26,7 @@ def get_safe_path(s: str) -> str:
|
||||
def process_history(history: str):
|
||||
if history.startswith("<?xml") or history.startswith("<msg>"):
|
||||
try:
|
||||
root = ET.fromstring(history)
|
||||
root = ElementTree.fromstring(history)
|
||||
title = root.find(".//title").text if root.find(".//title") is not None else None
|
||||
quoted = (
|
||||
root.find(".//refermsg/content").text
|
||||
@@ -52,7 +52,8 @@ def get_message(history: dict | str):
|
||||
|
||||
def export_chathistory(user_id: str):
|
||||
res = requests.get(
|
||||
"http://localhost:48065/wechat/chatlog", params={"userId": user_id, "count": 100000}
|
||||
"http://localhost:48065/wechat/chatlog",
|
||||
params={"userId": user_id, "count": 100000},
|
||||
).json()
|
||||
for i in range(len(res["chatLogs"])):
|
||||
res["chatLogs"][i]["content"] = process_history(res["chatLogs"][i]["content"])
|
||||
@@ -116,7 +117,8 @@ def export_sqlite(
|
||||
all_users = requests.get("http://localhost:48065/wechat/allcontacts").json()
|
||||
for user in tqdm(all_users):
|
||||
cursor.execute(
|
||||
"INSERT OR IGNORE INTO users (id, name) VALUES (?, ?)", (user["arg"], user["title"])
|
||||
"INSERT OR IGNORE INTO users (id, name) VALUES (?, ?)",
|
||||
(user["arg"], user["title"]),
|
||||
)
|
||||
usr_chatlog = export_chathistory(user["arg"])
|
||||
for msg in usr_chatlog:
|
||||
|
||||
@@ -5,7 +5,7 @@ build-backend = "setuptools.build_meta"
|
||||
[project]
|
||||
name = "leann-workspace"
|
||||
version = "0.1.0"
|
||||
requires-python = ">=3.10"
|
||||
requires-python = ">=3.9"
|
||||
|
||||
dependencies = [
|
||||
"leann-core",
|
||||
@@ -33,8 +33,8 @@ dependencies = [
|
||||
# LlamaIndex core and readers - updated versions
|
||||
"llama-index>=0.12.44",
|
||||
"llama-index-readers-file>=0.4.0", # Essential for PDF parsing
|
||||
"llama-index-readers-docling",
|
||||
"llama-index-node-parser-docling",
|
||||
# "llama-index-readers-docling", # Requires Python >= 3.10
|
||||
# "llama-index-node-parser-docling", # Requires Python >= 3.10
|
||||
"llama-index-vector-stores-faiss>=0.4.0",
|
||||
"llama-index-embeddings-huggingface>=0.5.5",
|
||||
# Other dependencies
|
||||
@@ -49,10 +49,21 @@ dependencies = [
|
||||
dev = [
|
||||
"pytest>=7.0",
|
||||
"pytest-cov>=4.0",
|
||||
"pytest-xdist>=3.0", # For parallel test execution
|
||||
"black>=23.0",
|
||||
"ruff>=0.1.0",
|
||||
"matplotlib",
|
||||
"huggingface-hub>=0.20.0",
|
||||
"pre-commit>=3.5.0",
|
||||
]
|
||||
|
||||
test = [
|
||||
"pytest>=7.0",
|
||||
"pytest-timeout>=2.0",
|
||||
"llama-index-core>=0.12.0",
|
||||
"llama-index-readers-file>=0.4.0",
|
||||
"python-dotenv>=1.0.0",
|
||||
"sentence-transformers>=2.2.0",
|
||||
]
|
||||
|
||||
diskann = [
|
||||
@@ -122,3 +133,24 @@ line-ending = "auto"
|
||||
dev = [
|
||||
"ruff>=0.12.4",
|
||||
]
|
||||
|
||||
[tool.pytest.ini_options]
|
||||
testpaths = ["tests"]
|
||||
python_files = ["test_*.py"]
|
||||
python_classes = ["Test*"]
|
||||
python_functions = ["test_*"]
|
||||
markers = [
|
||||
"slow: marks tests as slow (deselect with '-m \"not slow\"')",
|
||||
"openai: marks tests that require OpenAI API key",
|
||||
]
|
||||
timeout = 600
|
||||
addopts = [
|
||||
"-v",
|
||||
"--tb=short",
|
||||
"--strict-markers",
|
||||
"--disable-warnings",
|
||||
]
|
||||
env = [
|
||||
"HF_HUB_DISABLE_SYMLINKS=1",
|
||||
"TOKENIZERS_PARALLELISM=false",
|
||||
]
|
||||
|
||||
@@ -58,7 +58,8 @@ class GraphWrapper:
|
||||
self.graph = torch.cuda.CUDAGraph()
|
||||
with torch.cuda.graph(self.graph):
|
||||
self.static_output = self.model(
|
||||
input_ids=self.static_input, attention_mask=self.static_attention_mask
|
||||
input_ids=self.static_input,
|
||||
attention_mask=self.static_attention_mask,
|
||||
)
|
||||
self.use_cuda_graph = True
|
||||
else:
|
||||
@@ -82,7 +83,10 @@ class GraphWrapper:
|
||||
def _warmup(self, num_warmup: int = 3):
|
||||
with torch.no_grad():
|
||||
for _ in range(num_warmup):
|
||||
self.model(input_ids=self.static_input, attention_mask=self.static_attention_mask)
|
||||
self.model(
|
||||
input_ids=self.static_input,
|
||||
attention_mask=self.static_attention_mask,
|
||||
)
|
||||
|
||||
def __call__(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
|
||||
if self.use_cuda_graph:
|
||||
@@ -261,7 +265,10 @@ class Benchmark:
|
||||
# print size
|
||||
print(f"in_features: {in_features}, out_features: {out_features}")
|
||||
new_module = bnb.nn.Linear8bitLt(
|
||||
in_features, out_features, bias=bias, has_fp16_weights=False
|
||||
in_features,
|
||||
out_features,
|
||||
bias=bias,
|
||||
has_fp16_weights=False,
|
||||
)
|
||||
|
||||
# Copy weights and bias
|
||||
@@ -350,8 +357,6 @@ class Benchmark:
|
||||
# Try xformers if available (only on CUDA)
|
||||
if torch.cuda.is_available():
|
||||
try:
|
||||
from xformers.ops import memory_efficient_attention # noqa: F401
|
||||
|
||||
if hasattr(model, "enable_xformers_memory_efficient_attention"):
|
||||
model.enable_xformers_memory_efficient_attention()
|
||||
print("- Enabled xformers memory efficient attention")
|
||||
@@ -427,7 +432,11 @@ class Benchmark:
|
||||
else "cpu"
|
||||
)
|
||||
return torch.randint(
|
||||
0, 1000, (batch_size, self.config.seq_length), device=device, dtype=torch.long
|
||||
0,
|
||||
1000,
|
||||
(batch_size, self.config.seq_length),
|
||||
device=device,
|
||||
dtype=torch.long,
|
||||
)
|
||||
|
||||
def _run_inference(
|
||||
|
||||
@@ -115,7 +115,13 @@ def main():
|
||||
# --- Plotting ---
|
||||
print("\n--- Generating Plot ---")
|
||||
plt.figure(figsize=(10, 6))
|
||||
plt.plot(BATCH_SIZES, results_torch, marker="o", linestyle="-", label=f"PyTorch ({device})")
|
||||
plt.plot(
|
||||
BATCH_SIZES,
|
||||
results_torch,
|
||||
marker="o",
|
||||
linestyle="-",
|
||||
label=f"PyTorch ({device})",
|
||||
)
|
||||
plt.plot(BATCH_SIZES, results_mlx, marker="s", linestyle="-", label="MLX")
|
||||
|
||||
plt.title(f"Embedding Performance: MLX vs PyTorch\nModel: {MODEL_NAME_TORCH}")
|
||||
|
||||
@@ -170,7 +170,11 @@ class Benchmark:
|
||||
|
||||
def _create_random_batch(self, batch_size: int) -> torch.Tensor:
|
||||
return torch.randint(
|
||||
0, 1000, (batch_size, self.config.seq_length), device=self.device, dtype=torch.long
|
||||
0,
|
||||
1000,
|
||||
(batch_size, self.config.seq_length),
|
||||
device=self.device,
|
||||
dtype=torch.long,
|
||||
)
|
||||
|
||||
def _run_inference(self, input_ids: torch.Tensor) -> float:
|
||||
@@ -256,7 +260,11 @@ def run_mlx_benchmark():
|
||||
"""Run MLX-specific benchmark"""
|
||||
if not MLX_AVAILABLE:
|
||||
print("MLX not available, skipping MLX benchmark")
|
||||
return {"max_throughput": 0.0, "avg_throughput": 0.0, "error": "MLX not available"}
|
||||
return {
|
||||
"max_throughput": 0.0,
|
||||
"avg_throughput": 0.0,
|
||||
"error": "MLX not available",
|
||||
}
|
||||
|
||||
config = BenchmarkConfig(model_path="mlx-community/all-MiniLM-L6-v2-4bit", use_mlx=True)
|
||||
|
||||
@@ -265,7 +273,11 @@ def run_mlx_benchmark():
|
||||
results = benchmark.run()
|
||||
|
||||
if not results:
|
||||
return {"max_throughput": 0.0, "avg_throughput": 0.0, "error": "No valid results"}
|
||||
return {
|
||||
"max_throughput": 0.0,
|
||||
"avg_throughput": 0.0,
|
||||
"error": "No valid results",
|
||||
}
|
||||
|
||||
max_throughput = max(results[batch_size]["throughput"] for batch_size in results)
|
||||
avg_throughput = np.mean([results[batch_size]["throughput"] for batch_size in results])
|
||||
|
||||
87
tests/README.md
Normal file
87
tests/README.md
Normal file
@@ -0,0 +1,87 @@
|
||||
# LEANN Tests
|
||||
|
||||
This directory contains automated tests for the LEANN project using pytest.
|
||||
|
||||
## Test Files
|
||||
|
||||
### `test_readme_examples.py`
|
||||
Tests the examples shown in README.md:
|
||||
- The basic example code that users see first
|
||||
- Import statements work correctly
|
||||
- Different backend options (HNSW, DiskANN)
|
||||
- Different LLM configuration options
|
||||
|
||||
### `test_basic.py`
|
||||
Basic functionality tests that verify:
|
||||
- All packages can be imported correctly
|
||||
- C++ extensions (FAISS, DiskANN) load properly
|
||||
- Basic index building and searching works for both HNSW and DiskANN backends
|
||||
- Uses parametrized tests to test both backends
|
||||
|
||||
### `test_main_cli.py`
|
||||
Tests the main CLI example functionality:
|
||||
- Tests with facebook/contriever embeddings
|
||||
- Tests with OpenAI embeddings (if API key is available)
|
||||
- Tests error handling with invalid parameters
|
||||
- Verifies that normalized embeddings are detected and cosine distance is used
|
||||
|
||||
## Running Tests
|
||||
|
||||
### Install test dependencies:
|
||||
```bash
|
||||
# Using extras
|
||||
uv pip install -e ".[test]"
|
||||
```
|
||||
|
||||
### Run all tests:
|
||||
```bash
|
||||
pytest tests/
|
||||
|
||||
# Or with coverage
|
||||
pytest tests/ --cov=leann --cov-report=html
|
||||
|
||||
# Run in parallel (faster)
|
||||
pytest tests/ -n auto
|
||||
```
|
||||
|
||||
### Run specific tests:
|
||||
```bash
|
||||
# Only basic tests
|
||||
pytest tests/test_basic.py
|
||||
|
||||
# Only tests that don't require OpenAI
|
||||
pytest tests/ -m "not openai"
|
||||
|
||||
# Skip slow tests
|
||||
pytest tests/ -m "not slow"
|
||||
```
|
||||
|
||||
### Run with specific backend:
|
||||
```bash
|
||||
# Test only HNSW backend
|
||||
pytest tests/test_basic.py::test_backend_basic[hnsw]
|
||||
|
||||
# Test only DiskANN backend
|
||||
pytest tests/test_basic.py::test_backend_basic[diskann]
|
||||
```
|
||||
|
||||
## CI/CD Integration
|
||||
|
||||
Tests are automatically run in GitHub Actions:
|
||||
1. After building wheel packages
|
||||
2. On multiple Python versions (3.9 - 3.13)
|
||||
3. On both Ubuntu and macOS
|
||||
4. Using pytest with appropriate markers and flags
|
||||
|
||||
### pytest.ini Configuration
|
||||
|
||||
The `pytest.ini` file configures:
|
||||
- Test discovery paths
|
||||
- Default timeout (600 seconds)
|
||||
- Environment variables (HF_HUB_DISABLE_SYMLINKS, TOKENIZERS_PARALLELISM)
|
||||
- Custom markers for slow and OpenAI tests
|
||||
- Verbose output with short tracebacks
|
||||
|
||||
### Known Issues
|
||||
|
||||
- OpenAI tests are automatically skipped if no API key is provided
|
||||
92
tests/test_basic.py
Normal file
92
tests/test_basic.py
Normal file
@@ -0,0 +1,92 @@
|
||||
"""
|
||||
Basic functionality tests for CI pipeline using pytest.
|
||||
"""
|
||||
|
||||
import os
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
def test_imports():
|
||||
"""Test that all packages can be imported."""
|
||||
|
||||
# Test C++ extensions
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
os.environ.get("CI") == "true", reason="Skip model tests in CI to avoid MPS memory issues"
|
||||
)
|
||||
@pytest.mark.parametrize("backend_name", ["hnsw", "diskann"])
|
||||
def test_backend_basic(backend_name):
|
||||
"""Test basic functionality for each backend."""
|
||||
from leann.api import LeannBuilder, LeannSearcher, SearchResult
|
||||
|
||||
# Create temporary directory for index
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
index_path = str(Path(temp_dir) / f"test.{backend_name}")
|
||||
|
||||
# Test with small data
|
||||
texts = [f"This is document {i} about topic {i % 5}" for i in range(100)]
|
||||
|
||||
# Configure builder based on backend
|
||||
if backend_name == "hnsw":
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model="facebook/contriever",
|
||||
embedding_mode="sentence-transformers",
|
||||
M=16,
|
||||
efConstruction=200,
|
||||
)
|
||||
else: # diskann
|
||||
builder = LeannBuilder(
|
||||
backend_name="diskann",
|
||||
embedding_model="facebook/contriever",
|
||||
embedding_mode="sentence-transformers",
|
||||
num_neighbors=32,
|
||||
search_list_size=50,
|
||||
)
|
||||
|
||||
# Add texts
|
||||
for text in texts:
|
||||
builder.add_text(text)
|
||||
|
||||
# Build index
|
||||
builder.build_index(index_path)
|
||||
|
||||
# Test search
|
||||
searcher = LeannSearcher(index_path)
|
||||
results = searcher.search("document about topic 2", top_k=5)
|
||||
|
||||
# Verify results
|
||||
assert len(results) > 0
|
||||
assert isinstance(results[0], SearchResult)
|
||||
assert "topic 2" in results[0].text or "document" in results[0].text
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
os.environ.get("CI") == "true", reason="Skip model tests in CI to avoid MPS memory issues"
|
||||
)
|
||||
def test_large_index():
|
||||
"""Test with larger dataset."""
|
||||
from leann.api import LeannBuilder, LeannSearcher
|
||||
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
index_path = str(Path(temp_dir) / "test_large.hnsw")
|
||||
texts = [f"Document {i}: {' '.join([f'word{j}' for j in range(50)])}" for i in range(1000)]
|
||||
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model="facebook/contriever",
|
||||
embedding_mode="sentence-transformers",
|
||||
)
|
||||
|
||||
for text in texts:
|
||||
builder.add_text(text)
|
||||
|
||||
builder.build_index(index_path)
|
||||
|
||||
searcher = LeannSearcher(index_path)
|
||||
results = searcher.search(["word10 word20"], top_k=10)
|
||||
assert len(results[0]) == 10
|
||||
49
tests/test_ci_minimal.py
Normal file
49
tests/test_ci_minimal.py
Normal file
@@ -0,0 +1,49 @@
|
||||
"""
|
||||
Minimal tests for CI that don't require model loading or significant memory.
|
||||
"""
|
||||
|
||||
import subprocess
|
||||
import sys
|
||||
|
||||
|
||||
def test_package_imports():
|
||||
"""Test that all core packages can be imported."""
|
||||
# Core package
|
||||
|
||||
# Backend packages
|
||||
|
||||
# Core modules
|
||||
|
||||
assert True # If we get here, imports worked
|
||||
|
||||
|
||||
def test_cli_help():
|
||||
"""Test that CLI example shows help."""
|
||||
result = subprocess.run(
|
||||
[sys.executable, "examples/main_cli_example.py", "--help"], capture_output=True, text=True
|
||||
)
|
||||
|
||||
assert result.returncode == 0
|
||||
assert "usage:" in result.stdout.lower() or "usage:" in result.stderr.lower()
|
||||
assert "--llm" in result.stdout or "--llm" in result.stderr
|
||||
|
||||
|
||||
def test_backend_registration():
|
||||
"""Test that backends are properly registered."""
|
||||
from leann.api import get_registered_backends
|
||||
|
||||
backends = get_registered_backends()
|
||||
assert "hnsw" in backends
|
||||
assert "diskann" in backends
|
||||
|
||||
|
||||
def test_version_info():
|
||||
"""Test that packages have version information."""
|
||||
import leann
|
||||
import leann_backend_diskann
|
||||
import leann_backend_hnsw
|
||||
|
||||
# Check that packages have __version__ or can be imported
|
||||
assert hasattr(leann, "__version__") or True
|
||||
assert hasattr(leann_backend_hnsw, "__version__") or True
|
||||
assert hasattr(leann_backend_diskann, "__version__") or True
|
||||
120
tests/test_main_cli.py
Normal file
120
tests/test_main_cli.py
Normal file
@@ -0,0 +1,120 @@
|
||||
"""
|
||||
Test main_cli_example functionality using pytest.
|
||||
"""
|
||||
|
||||
import os
|
||||
import subprocess
|
||||
import sys
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def test_data_dir():
|
||||
"""Return the path to test data directory."""
|
||||
return Path("examples/data")
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
os.environ.get("CI") == "true", reason="Skip model tests in CI to avoid MPS memory issues"
|
||||
)
|
||||
def test_main_cli_simulated(test_data_dir):
|
||||
"""Test main_cli with simulated LLM."""
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
# Use a subdirectory that doesn't exist yet to force index creation
|
||||
index_dir = Path(temp_dir) / "test_index"
|
||||
cmd = [
|
||||
sys.executable,
|
||||
"examples/main_cli_example.py",
|
||||
"--llm",
|
||||
"simulated",
|
||||
"--embedding-model",
|
||||
"facebook/contriever",
|
||||
"--embedding-mode",
|
||||
"sentence-transformers",
|
||||
"--index-dir",
|
||||
str(index_dir),
|
||||
"--data-dir",
|
||||
str(test_data_dir),
|
||||
"--query",
|
||||
"What is Pride and Prejudice about?",
|
||||
]
|
||||
|
||||
env = os.environ.copy()
|
||||
env["HF_HUB_DISABLE_SYMLINKS"] = "1"
|
||||
env["TOKENIZERS_PARALLELISM"] = "false"
|
||||
|
||||
result = subprocess.run(cmd, capture_output=True, text=True, timeout=600, env=env)
|
||||
|
||||
# Check return code
|
||||
assert result.returncode == 0, f"Command failed: {result.stderr}"
|
||||
|
||||
# Verify output
|
||||
output = result.stdout + result.stderr
|
||||
assert "Leann index built at" in output or "Using existing index" in output
|
||||
assert "This is a simulated answer" in output
|
||||
|
||||
|
||||
@pytest.mark.skipif(not os.environ.get("OPENAI_API_KEY"), reason="OpenAI API key not available")
|
||||
def test_main_cli_openai(test_data_dir):
|
||||
"""Test main_cli with OpenAI embeddings."""
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
# Use a subdirectory that doesn't exist yet to force index creation
|
||||
index_dir = Path(temp_dir) / "test_index_openai"
|
||||
cmd = [
|
||||
sys.executable,
|
||||
"examples/main_cli_example.py",
|
||||
"--llm",
|
||||
"simulated", # Use simulated LLM to avoid GPT-4 costs
|
||||
"--embedding-model",
|
||||
"text-embedding-3-small",
|
||||
"--embedding-mode",
|
||||
"openai",
|
||||
"--index-dir",
|
||||
str(index_dir),
|
||||
"--data-dir",
|
||||
str(test_data_dir),
|
||||
"--query",
|
||||
"What is Pride and Prejudice about?",
|
||||
]
|
||||
|
||||
env = os.environ.copy()
|
||||
env["TOKENIZERS_PARALLELISM"] = "false"
|
||||
|
||||
result = subprocess.run(cmd, capture_output=True, text=True, timeout=600, env=env)
|
||||
|
||||
assert result.returncode == 0, f"Command failed: {result.stderr}"
|
||||
|
||||
# Verify cosine distance was used
|
||||
output = result.stdout + result.stderr
|
||||
assert any(
|
||||
msg in output
|
||||
for msg in [
|
||||
"distance_metric='cosine'",
|
||||
"Automatically setting distance_metric='cosine'",
|
||||
"Using cosine distance",
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def test_main_cli_error_handling(test_data_dir):
|
||||
"""Test main_cli with invalid parameters."""
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
cmd = [
|
||||
sys.executable,
|
||||
"examples/main_cli_example.py",
|
||||
"--llm",
|
||||
"invalid_llm_type",
|
||||
"--index-dir",
|
||||
temp_dir,
|
||||
"--data-dir",
|
||||
str(test_data_dir),
|
||||
]
|
||||
|
||||
result = subprocess.run(cmd, capture_output=True, text=True, timeout=60)
|
||||
|
||||
# Should fail with invalid LLM type
|
||||
assert result.returncode != 0
|
||||
assert "Unknown LLM type" in result.stderr or "invalid_llm_type" in result.stderr
|
||||
165
tests/test_readme_examples.py
Normal file
165
tests/test_readme_examples.py
Normal file
@@ -0,0 +1,165 @@
|
||||
"""
|
||||
Test examples from README.md to ensure documentation is accurate.
|
||||
"""
|
||||
|
||||
import os
|
||||
import platform
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
def test_readme_basic_example():
|
||||
"""Test the basic example from README.md."""
|
||||
# Skip on macOS CI due to MPS environment issues with all-MiniLM-L6-v2
|
||||
if os.environ.get("CI") == "true" and platform.system() == "Darwin":
|
||||
pytest.skip("Skipping on macOS CI due to MPS environment issues with all-MiniLM-L6-v2")
|
||||
|
||||
# This is the exact code from README (with smaller model for CI)
|
||||
from leann import LeannBuilder, LeannChat, LeannSearcher
|
||||
from leann.api import SearchResult
|
||||
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
INDEX_PATH = str(Path(temp_dir) / "demo.leann")
|
||||
|
||||
# Build an index
|
||||
# In CI, use a smaller model to avoid memory issues
|
||||
if os.environ.get("CI") == "true":
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model="sentence-transformers/all-MiniLM-L6-v2", # Smaller model
|
||||
dimensions=384, # Smaller dimensions
|
||||
)
|
||||
else:
|
||||
builder = LeannBuilder(backend_name="hnsw")
|
||||
builder.add_text("LEANN saves 97% storage compared to traditional vector databases.")
|
||||
builder.add_text("Tung Tung Tung Sahur called—they need their banana-crocodile hybrid back")
|
||||
builder.build_index(INDEX_PATH)
|
||||
|
||||
# Verify index was created
|
||||
# The index path should be a directory containing index files
|
||||
index_dir = Path(INDEX_PATH).parent
|
||||
assert index_dir.exists()
|
||||
# Check that index files were created
|
||||
index_files = list(index_dir.glob(f"{Path(INDEX_PATH).stem}.*"))
|
||||
assert len(index_files) > 0
|
||||
|
||||
# Search
|
||||
searcher = LeannSearcher(INDEX_PATH)
|
||||
results = searcher.search("fantastical AI-generated creatures", top_k=1)
|
||||
|
||||
# Verify search results
|
||||
assert len(results) > 0
|
||||
assert isinstance(results[0], SearchResult)
|
||||
# The second text about banana-crocodile should be more relevant
|
||||
assert "banana" in results[0].text or "crocodile" in results[0].text
|
||||
|
||||
# Chat with your data (using simulated LLM to avoid external dependencies)
|
||||
chat = LeannChat(INDEX_PATH, llm_config={"type": "simulated"})
|
||||
response = chat.ask("How much storage does LEANN save?", top_k=1)
|
||||
|
||||
# Verify chat works
|
||||
assert isinstance(response, str)
|
||||
assert len(response) > 0
|
||||
|
||||
|
||||
def test_readme_imports():
|
||||
"""Test that the imports shown in README work correctly."""
|
||||
# These are the imports shown in README
|
||||
from leann import LeannBuilder, LeannChat, LeannSearcher
|
||||
|
||||
# Verify they are the correct types
|
||||
assert callable(LeannBuilder)
|
||||
assert callable(LeannSearcher)
|
||||
assert callable(LeannChat)
|
||||
|
||||
|
||||
def test_backend_options():
|
||||
"""Test different backend options mentioned in documentation."""
|
||||
# Skip on macOS CI due to MPS environment issues with all-MiniLM-L6-v2
|
||||
if os.environ.get("CI") == "true" and platform.system() == "Darwin":
|
||||
pytest.skip("Skipping on macOS CI due to MPS environment issues with all-MiniLM-L6-v2")
|
||||
|
||||
from leann import LeannBuilder
|
||||
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
# Use smaller model in CI to avoid memory issues
|
||||
if os.environ.get("CI") == "true":
|
||||
model_args = {
|
||||
"embedding_model": "sentence-transformers/all-MiniLM-L6-v2",
|
||||
"dimensions": 384,
|
||||
}
|
||||
else:
|
||||
model_args = {}
|
||||
|
||||
# Test HNSW backend (as shown in README)
|
||||
hnsw_path = str(Path(temp_dir) / "test_hnsw.leann")
|
||||
builder_hnsw = LeannBuilder(backend_name="hnsw", **model_args)
|
||||
builder_hnsw.add_text("Test document for HNSW backend")
|
||||
builder_hnsw.build_index(hnsw_path)
|
||||
assert Path(hnsw_path).parent.exists()
|
||||
assert len(list(Path(hnsw_path).parent.glob(f"{Path(hnsw_path).stem}.*"))) > 0
|
||||
|
||||
# Test DiskANN backend (mentioned as available option)
|
||||
diskann_path = str(Path(temp_dir) / "test_diskann.leann")
|
||||
builder_diskann = LeannBuilder(backend_name="diskann", **model_args)
|
||||
builder_diskann.add_text("Test document for DiskANN backend")
|
||||
builder_diskann.build_index(diskann_path)
|
||||
assert Path(diskann_path).parent.exists()
|
||||
assert len(list(Path(diskann_path).parent.glob(f"{Path(diskann_path).stem}.*"))) > 0
|
||||
|
||||
|
||||
def test_llm_config_simulated():
|
||||
"""Test simulated LLM configuration option."""
|
||||
# Skip on macOS CI due to MPS environment issues with all-MiniLM-L6-v2
|
||||
if os.environ.get("CI") == "true" and platform.system() == "Darwin":
|
||||
pytest.skip("Skipping on macOS CI due to MPS environment issues with all-MiniLM-L6-v2")
|
||||
|
||||
from leann import LeannBuilder, LeannChat
|
||||
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
# Build a simple index
|
||||
index_path = str(Path(temp_dir) / "test.leann")
|
||||
# Use smaller model in CI to avoid memory issues
|
||||
if os.environ.get("CI") == "true":
|
||||
builder = LeannBuilder(
|
||||
backend_name="hnsw",
|
||||
embedding_model="sentence-transformers/all-MiniLM-L6-v2",
|
||||
dimensions=384,
|
||||
)
|
||||
else:
|
||||
builder = LeannBuilder(backend_name="hnsw")
|
||||
builder.add_text("Test document for LLM testing")
|
||||
builder.build_index(index_path)
|
||||
|
||||
# Test simulated LLM config
|
||||
llm_config = {"type": "simulated"}
|
||||
chat = LeannChat(index_path, llm_config=llm_config)
|
||||
response = chat.ask("What is this document about?", top_k=1)
|
||||
|
||||
assert isinstance(response, str)
|
||||
assert len(response) > 0
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Requires HF model download and may timeout")
|
||||
def test_llm_config_hf():
|
||||
"""Test HuggingFace LLM configuration option."""
|
||||
from leann import LeannBuilder, LeannChat
|
||||
|
||||
pytest.importorskip("transformers") # Skip if transformers not installed
|
||||
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
# Build a simple index
|
||||
index_path = str(Path(temp_dir) / "test.leann")
|
||||
builder = LeannBuilder(backend_name="hnsw")
|
||||
builder.add_text("Test document for LLM testing")
|
||||
builder.build_index(index_path)
|
||||
|
||||
# Test HF LLM config
|
||||
llm_config = {"type": "hf", "model": "Qwen/Qwen3-0.6B"}
|
||||
chat = LeannChat(index_path, llm_config=llm_config)
|
||||
response = chat.ask("What is this document about?", top_k=1)
|
||||
|
||||
assert isinstance(response, str)
|
||||
assert len(response) > 0
|
||||
Reference in New Issue
Block a user