#!/usr/bin/env python3 """Test only Faiss HNSW""" import sys import time import psutil import gc import os def get_memory_usage(): process = psutil.Process() return process.memory_info().rss / 1024 / 1024 class MemoryTracker: def __init__(self, name: str): self.name = name self.start_mem = get_memory_usage() self.stages = [] def checkpoint(self, stage: str): current_mem = get_memory_usage() diff = current_mem - self.start_mem print(f"[{self.name} - {stage}] Memory: {current_mem:.1f} MB (+{diff:.1f} MB)") self.stages.append((stage, current_mem)) return current_mem def summary(self): peak_mem = max(mem for _, mem in self.stages) print(f"Peak Memory: {peak_mem:.1f} MB") return peak_mem def main(): try: import faiss except ImportError: print("Faiss is not installed.") print("Please install it with `uv pip install faiss-cpu`") sys.exit(1) from llama_index.core import ( SimpleDirectoryReader, VectorStoreIndex, StorageContext, Settings, node_parser, Document, ) from llama_index.core.node_parser import SentenceSplitter from llama_index.vector_stores.faiss import FaissVectorStore from llama_index.embeddings.huggingface import HuggingFaceEmbedding tracker = MemoryTracker("Faiss HNSW") tracker.checkpoint("Initial") embed_model = HuggingFaceEmbedding(model_name="facebook/contriever") Settings.embed_model = embed_model tracker.checkpoint("After embedding model setup") d = 768 faiss_index = faiss.IndexHNSWFlat(d, 32) faiss_index.hnsw.efConstruction = 64 tracker.checkpoint("After Faiss index creation") documents = SimpleDirectoryReader( "examples/data", recursive=True, encoding="utf-8", required_exts=[".pdf", ".txt", ".md"], ).load_data() tracker.checkpoint("After document loading") # Parse into chunks using the same splitter as LEANN node_parser = SentenceSplitter( chunk_size=256, chunk_overlap=20, separator=" ", paragraph_separator="\n\n" ) tracker.checkpoint("After text splitter setup") # Check if index already exists and try to load it index_loaded = False if os.path.exists("./storage_faiss"): print("Loading existing Faiss HNSW index...") try: # Use the correct Faiss loading pattern from the example vector_store = FaissVectorStore.from_persist_dir("./storage_faiss") storage_context = StorageContext.from_defaults( vector_store=vector_store, persist_dir="./storage_faiss" ) from llama_index.core import load_index_from_storage index = load_index_from_storage(storage_context=storage_context) print(f"Index loaded from ./storage_faiss") tracker.checkpoint("After loading existing index") index_loaded = True except Exception as e: print(f"Failed to load existing index: {e}") print("Cleaning up corrupted index and building new one...") # Clean up corrupted index import shutil if os.path.exists("./storage_faiss"): shutil.rmtree("./storage_faiss") if not index_loaded: print("Building new Faiss HNSW index...") # Use the correct Faiss building pattern from the example vector_store = FaissVectorStore(faiss_index=faiss_index) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context, transformations=[node_parser] ) tracker.checkpoint("After index building") # Save index to disk using the correct pattern index.storage_context.persist(persist_dir="./storage_faiss") tracker.checkpoint("After index saving") # Measure runtime memory overhead print("\nMeasuring runtime memory overhead...") runtime_start_mem = get_memory_usage() print(f"Before load memory: {runtime_start_mem:.1f} MB") tracker.checkpoint("Before load memory") query_engine = index.as_query_engine(similarity_top_k=20) queries = [ "什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发", "What is LEANN and how does it work?", "华为诺亚方舟实验室的主要研究内容", ] for i, query in enumerate(queries): start_time = time.time() _ = query_engine.query(query) query_time = time.time() - start_time print(f"Query {i + 1} time: {query_time:.3f}s") tracker.checkpoint(f"After query {i + 1}") runtime_end_mem = get_memory_usage() runtime_overhead = runtime_end_mem - runtime_start_mem peak_memory = tracker.summary() print(f"Peak Memory: {peak_memory:.1f} MB") print(f"Runtime Memory Overhead: {runtime_overhead:.1f} MB") if __name__ == "__main__": main()