import faulthandler faulthandler.enable() import argparse from llama_index.core import SimpleDirectoryReader, Settings from llama_index.core.readers.base import BaseReader from llama_index.node_parser.docling import DoclingNodeParser from llama_index.readers.docling import DoclingReader from docling_core.transforms.chunker.hybrid_chunker import HybridChunker import asyncio import os import dotenv from leann.api import LeannBuilder, LeannSearcher, LeannChat import shutil from pathlib import Path dotenv.load_dotenv() reader = DoclingReader(export_type=DoclingReader.ExportType.JSON) file_extractor: dict[str, BaseReader] = { ".docx": reader, ".pptx": reader, ".pdf": reader, ".xlsx": reader, } node_parser = DoclingNodeParser( chunker=HybridChunker(tokenizer="Qwen/Qwen3-Embedding-4B", max_tokens=64) ) print("Loading documents...") documents = SimpleDirectoryReader( "examples/data", recursive=True, file_extractor=file_extractor, encoding="utf-8", required_exts=[".pdf", ".docx", ".pptx", ".xlsx"] ).load_data(show_progress=True) print("Documents loaded.") all_texts = [] for doc in documents: nodes = node_parser.get_nodes_from_documents([doc]) for node in nodes: all_texts.append(node.get_content()) INDEX_DIR = Path("./test_pdf_index") INDEX_PATH = str(INDEX_DIR / "pdf_documents.leann") if not INDEX_DIR.exists(): print(f"--- Index directory not found, building new index ---") print(f"\n[PHASE 1] Building Leann index...") # CSR compact mode with recompute builder = LeannBuilder( backend_name="hnsw", embedding_model="facebook/contriever", graph_degree=32, complexity=64, is_compact=True, is_recompute=True ) print(f"Loaded {len(all_texts)} text chunks from documents.") for chunk_text in all_texts: builder.add_text(chunk_text) builder.build_index(INDEX_PATH) print(f"\nLeann index built at {INDEX_PATH}!") else: print(f"--- Using existing index at {INDEX_DIR} ---") async def main(args): print(f"\n[PHASE 2] Starting Leann chat session...") llm_config = { "type": args.llm, "model": args.model, "host": args.host } chat = LeannChat(index_path=INDEX_PATH, llm_config=llm_config) query = "Based on the paper, what are the main techniques LEANN explores to reduce the storage overhead and DLPM explore to achieve Fairness and Efiiciency trade-off?" print(f"You: {query}") chat_response = chat.ask(query, top_k=3, recompute_beighbor_embeddings=True) print(f"Leann: {chat_response}") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Run Leann Chat with various LLM backends.") parser.add_argument("--llm", type=str, default="hf", choices=["simulated", "ollama", "hf"], help="The LLM backend to use.") parser.add_argument("--model", type=str, default='meta-llama/Llama-3.2-3B-Instruct', help="The model name to use (e.g., 'llama3:8b' for ollama, 'deepseek-ai/deepseek-llm-7b-chat' for hf).") parser.add_argument("--host", type=str, default="http://localhost:11434", help="The host for the Ollama API.") args = parser.parse_args() asyncio.run(main(args))