from llama_index.core import VectorStoreIndex, Document from llama_index.core.embeddings import resolve_embed_model # Check the default embedding model embed_model = resolve_embed_model("default") print(f"Default embedding model: {embed_model}") # Create a simple test document doc = Document(text="This is a test document") # Get embedding dimension try: # Test embedding test_embedding = embed_model.get_text_embedding("test") print(f"Embedding dimension: {len(test_embedding)}") print(f"Embedding type: {type(test_embedding)}") except Exception as e: print(f"Error getting embedding: {e}") # Alternative way to check dimension if hasattr(embed_model, 'embed_dim'): print(f"Model embed_dim attribute: {embed_model.embed_dim}") elif hasattr(embed_model, 'dimension'): print(f"Model dimension attribute: {embed_model.dimension}")