from llama_index.core import VectorStoreIndex, Document from llama_index.core.embeddings import resolve_embed_model # Check the default embedding model embed_model = resolve_embed_model("default") print(f"Default embedding model: {embed_model}") # Create a simple test doc = Document(text="This is a test document") index = VectorStoreIndex.from_documents([doc]) # Get the embedding model from the index index_embed_model = index.embed_model print(f"Index embedding model: {index_embed_model}") # Check if it's OpenAI or local if hasattr(index_embed_model, 'model_name'): print(f"Model name: {index_embed_model.model_name}") else: print(f"Embedding model type: {type(index_embed_model)}")