import json import pickle from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, Any, List import numpy as np from .embedding_server_manager import EmbeddingServerManager from .interface import LeannBackendSearcherInterface class BaseSearcher(LeannBackendSearcherInterface, ABC): """ Abstract base class for Leann searchers, containing common logic for loading metadata, managing embedding servers, and handling file paths. """ def __init__(self, index_path: str, backend_module_name: str, **kwargs): """ Initializes the BaseSearcher. Args: index_path: Path to the Leann index file (e.g., '.../my_index.leann'). backend_module_name: The specific embedding server module to use (e.g., 'leann_backend_hnsw.hnsw_embedding_server'). **kwargs: Additional keyword arguments. """ self.index_path = Path(index_path) self.index_dir = self.index_path.parent self.meta = kwargs.get("meta", self._load_meta()) if not self.meta: raise ValueError("Searcher requires metadata from .meta.json.") self.dimensions = self.meta.get("dimensions") if not self.dimensions: raise ValueError("Dimensions not found in Leann metadata.") self.embedding_model = self.meta.get("embedding_model") if not self.embedding_model: print("WARNING: embedding_model not found in meta.json. Recompute will fail.") self.label_map = self._load_label_map() self.embedding_server_manager = EmbeddingServerManager( backend_module_name=backend_module_name ) def _load_meta(self) -> Dict[str, Any]: """Loads the metadata file associated with the index.""" # This is the corrected logic for finding the meta file. meta_path = self.index_dir / f"{self.index_path.name}.meta.json" if not meta_path.exists(): raise FileNotFoundError(f"Leann metadata file not found at {meta_path}") with open(meta_path, 'r', encoding='utf-8') as f: return json.load(f) def _load_label_map(self) -> Dict[int, str]: """Loads the mapping from integer IDs to string IDs.""" label_map_file = self.index_dir / "leann.labels.map" if not label_map_file.exists(): raise FileNotFoundError(f"Label map file not found: {label_map_file}") with open(label_map_file, 'rb') as f: return pickle.load(f) def _ensure_server_running(self, passages_source_file: str, port: int, **kwargs) -> None: """ Ensures the embedding server is running if recompute is needed. This is a helper for subclasses. """ if not self.embedding_model: raise ValueError("Cannot use recompute mode without 'embedding_model' in meta.json.") server_started = self.embedding_server_manager.start_server( port=port, model_name=self.embedding_model, passages_file=passages_source_file, distance_metric=kwargs.get("distance_metric"), use_mlx=kwargs.get("use_mlx", False), ) if not server_started: raise RuntimeError(f"Failed to start embedding server on port {port}") @abstractmethod def search(self, query: np.ndarray, top_k: int, **kwargs) -> Dict[str, Any]: """ Search for the top_k nearest neighbors of the query vector. Must be implemented by subclasses. """ pass def __del__(self): """Ensures the embedding server is stopped when the searcher is destroyed.""" if hasattr(self, 'embedding_server_manager'): self.embedding_server_manager.stop_server()