๐Ÿš€ LEANN: A Low-Storage Vector Index

Python 3.9+ MIT License PRs Welcome Platform

โšก Storage Saving RAG sytem on Consumer Device

Quick Start โ€ข Features โ€ข Benchmarks โ€ข Paper

--- ## ๐ŸŒŸ What is Leann? **Leann** revolutionizes Retrieval-Augmented Generation (RAG) by eliminating the storage bottleneck of traditional vector databases. Instead of pre-computing and storing billions of embeddings, Leann dynamically computes embeddings at query time using optimized graph-based search algorithms. ### ๐ŸŽฏ Why Leann? Traditional RAG systems face a fundamental trade-off: - **๐Ÿ’พ Storage**: Storing embeddings for millions of documents requires massive disk space - **๐Ÿ”„ Memory overhead**: The indexes LlamaIndex uses usually face high memory overhead (e.g., in-memory vector databases) - **๐Ÿ’ฐ Cost**: Vector databases are expensive to scale **Leann revolutionizes this with Graph-based recomputation and cutting-edge system optimizations:** - โœ… **Zero embedding storage** - Only graph structure is persisted, reducing storage by 94-97% - โœ… **Real-time computation** - Embeddings computed on-demand with low latency - โœ… **Memory efficient** - Runs on consumer hardware with theoretical zero memory overhead - โœ… **Graph-based optimization** - Advanced pruning techniques for efficient search while keeping low storage cost, with batching and overlapping strategies using low-precision search to optimize latency - โœ… **Pluggable backends** - Support for DiskANN, HNSW, and other ANN algorithms (welcome contributions!) ## ๐Ÿš€ Quick Start ### Installation ```bash git clone git@github.com:yichuan520030910320/LEANN-RAG.git leann cd leann git submodule update --init --recursive ``` **macOS:** ```bash brew install llvm libomp boost protobuf export CC=$(brew --prefix llvm)/bin/clang export CXX=$(brew --prefix llvm)/bin/clang++ uv sync ``` **Linux (Ubuntu/Debian):** ```bash sudo apt-get install libomp-dev libboost-all-dev protobuf-compiler libabsl-dev libmkl-full-dev libaio-dev uv sync ``` ### 30-Second Example ```python from leann.api import LeannBuilder, LeannSearcher # 1. Build index (no embeddings stored!) builder = LeannBuilder(backend_name="diskann") builder.add_text("Python is a powerful programming language") builder.add_text("Machine learning transforms industries") builder.add_text("Neural networks process complex data") builder.build_index("knowledge.leann") # 2. Search with real-time embeddings searcher = LeannSearcher("knowledge.leann") results = searcher.search("programming languages", top_k=2) for result in results: print(f"Score: {result['score']:.3f} - {result['text']}") ``` ### Run the Demo ```bash uv run examples/document_search.py ``` or you want to use python ```bash source .venv/bin/activate python ./examples/main_cli_example.py ``` **PDF RAG Demo (using LlamaIndex for document parsing and Leann for indexing/search)** This demo showcases how to build a RAG system for PDF documents using Leann. 1. Place your PDF files (and other supported formats like .docx, .pptx, .xlsx) into the `examples/data/` directory. 2. Ensure you have an `OPENAI_API_KEY` set in your environment variables or in a `.env` file for the LLM to function. ```bash uv run examples/main_cli_example.py ``` ### Regenerating Protobuf Files If you modify any `.proto` files (such as `embedding.proto`), or if you see errors about protobuf version mismatch, **regenerate the C++ protobuf files** to match your installed version: ```bash cd packages/leann-backend-diskann protoc --cpp_out=third_party/DiskANN/include --proto_path=third_party embedding.proto protoc --cpp_out=third_party/DiskANN/src --proto_path=third_party embedding.proto ``` This ensures the generated files are compatible with your system's protobuf library. ## โœจ Features ### ๐Ÿ”ฅ Core Features - **๐Ÿ”„ Real-time Embeddings** - Eliminate heavy embedding storage with dynamic computation using optimized ZMQ servers and highly optimized search paradigm (overlapping and batching) with highly optimized embedding engine - **๐Ÿ“ˆ Scalable Architecture** - Handles millions of documents on consumer hardware; the larger your dataset, the more LEANN can save - **๐ŸŽฏ Graph Pruning** - Advanced techniques to minimize the storage overhead of vector search to a limited footprint - **๐Ÿ—๏ธ Pluggable Backends** - DiskANN, HNSW/FAISS with unified API ### ๐Ÿ› ๏ธ Technical Highlights - **๐Ÿ”„ Recompute Mode** - Highest accuracy scenarios while eliminating vector storage overhead - **โšก Zero-copy Operations** - Minimize IPC overhead by transferring distances instead of embeddings - **๐Ÿš€ High-throughput Embedding Pipeline** - Optimized batched processing for maximum efficiency - **๐ŸŽฏ Two-level Search** - Novel coarse-to-fine search overlap for accelerated query processing (optional) - **๐Ÿ’พ Memory-mapped Indices** - Fast startup with raw text mapping to reduce memory overhead - **๐Ÿš€ MLX Support** - Ultra-fast recompute with quantized embedding models, accelerating building and search by 10-100x ### ๐ŸŽจ Developer Experience - **Simple Python API** - Get started in minutes - **Extensible backend system** - Easy to add new algorithms - **Comprehensive examples** - From basic usage to production deployment ## Applications on your MacBook ### ๐Ÿ“ง Lightweight RAG on your Apple Mail LEANN can create a searchable index of your Apple Mail emails, allowing you to query your email history using natural language. #### Quick Start
๐Ÿ“‹ Click to expand: Command Examples ```bash # Use default mail path (works for most macOS setups) python examples/mail_reader_leann.py # Specify your own mail path python examples/mail_reader_leann.py --mail-path "/Users/yourname/Library/Mail/V10/..." # Run with custom index directory python examples/mail_reader_leann.py --index-dir "./my_mail_index" # Limit number of emails processed (useful for testing) python examples/mail_reader_leann.py --max-emails 1000 # Run a single query python examples/mail_reader_leann.py --query "Find emails about project deadlines" ```
#### Finding Your Mail Path
๐Ÿ” Click to expand: How to find your mail path The default mail path is configured for a typical macOS setup. If you need to find your specific mail path: 1. Open Terminal 2. Run: `find ~/Library/Mail -name "Messages" -type d | head -5` 3. Use the parent directory(ended with Data) of the Messages folder as your `--mail-path`
#### Example Queries
๐Ÿ’ฌ Click to expand: Example queries you can try Once the index is built, you can ask questions like: - "Show me emails about meeting schedules" - "Find emails from my boss about deadlines" - "What did John say about the project timeline?" - "Show me emails about travel expenses"
### ๐ŸŒ Lightweight RAG on your Google Chrome History LEANN can create a searchable index of your Chrome browser history, allowing you to query your browsing history using natural language. #### Quick Start
๐Ÿ“‹ Click to expand: Command Examples ```bash # Use default Chrome profile (auto-finds all profiles) and recommand method to run this because usually default file is enough python examples/google_history_reader_leann.py # Run with custom index directory python examples/google_history_reader_leann.py --index-dir "./my_chrome_index" # Limit number of history entries processed (useful for testing) python examples/google_history_reader_leann.py --max-entries 500 # Run a single query python examples/google_history_reader_leann.py --query "What websites did I visit about machine learning?" # Use only a specific profile (disable auto-find) python examples/google_history_reader_leann.py --chrome-profile "~/Library/Application Support/Google/Chrome/Default" --no-auto-find-profiles ```
#### Finding Your Chrome Profile
๐Ÿ” Click to expand: How to find your Chrome profile The default Chrome profile path is configured for a typical macOS setup. If you need to find your specific Chrome profile: 1. Open Terminal 2. Run: `ls ~/Library/Application\ Support/Google/Chrome/` 3. Look for folders like "Default", "Profile 1", "Profile 2", etc. 4. Use the full path as your `--chrome-profile` argument **Common Chrome profile locations:** - macOS: `~/Library/Application Support/Google/Chrome/Default` - Linux: `~/.config/google-chrome/Default`
#### Example Queries
๐Ÿ’ฌ Click to expand: Example queries you can try Once the index is built, you can ask questions like: - "What websites did I visit about machine learning?" - "Find my search history about programming" - "What YouTube videos did I watch recently?" - "Show me websites I visited about travel planning"
### ๐Ÿ’ฌ Lightweight RAG on your WeChat History LEANN can create a searchable index of your WeChat chat history, allowing you to query your conversations using natural language. #### Prerequisites
๐Ÿ”ง Click to expand: Installation Requirements First, you need to install the WeChat exporter: ```bash sudo packages/wechat-exporter/wechattweak-cli install ``` **Troubleshooting**: If you encounter installation issues, check the [WeChatTweak-CLI issues page](https://github.com/sunnyyoung/WeChatTweak-CLI/issues/41).
#### Quick Start
๐Ÿ“‹ Click to expand: Command Examples ```bash # Use default settings (recommended for first run) python examples/wechat_history_reader_leann.py # Run with custom export directory and wehn we run the first time, LEANN will export all chat history automatically for you python examples/wechat_history_reader_leann.py --export-dir "./my_wechat_exports" # Run with custom index directory python examples/wechat_history_reader_leann.py --index-dir "./my_wechat_index" # Limit number of chat entries processed (useful for testing) python examples/wechat_history_reader_leann.py --max-entries 1000 # Run a single query python examples/wechat_history_reader_leann.py --query "Show me conversations about travel plans" ```
#### Example Queries
๐Ÿ’ฌ Click to expand: Example queries you can try Once the index is built, you can ask questions like: - "ๆˆ‘ๆƒณไนฐ้ญ”ๆœฏๅธˆ็บฆ็ฟฐ้€Š็š„็ƒ่กฃ๏ผŒ็ป™ๆˆ‘ไธ€ไบ›ๅฏนๅบ”่Šๅคฉ่ฎฐๅฝ•?" (Chinese: Show me chat records about buying Magic Johnson's jersey)
## ๐Ÿ“Š Benchmarks ### How to Reproduce Evaluation Results Reproducing our benchmarks is straightforward. The evaluation script is designed to be self-contained, automatically downloading all necessary data on its first run. #### 1. Environment Setup First, ensure you have followed the installation instructions in the [Quick Start](#-quick-start) section. This will install all core dependencies. Next, install the optional development dependencies, which include the `huggingface-hub` library required for automatic data download: ```bash # This command installs all development dependencies uv pip install -e ".[dev]" ``` #### 2. Run the Evaluation Simply run the evaluation script. The first time you run it, it will detect that the data is missing, download it from Hugging Face Hub, and then proceed with the evaluation. **To evaluate the DPR dataset:** ```bash python examples/run_evaluation.py data/indices/dpr/dpr_diskann ``` **To evaluate the RPJ-Wiki dataset:** ```bash python examples/run_evaluation.py data/indices/rpj_wiki/rpj_wiki.index ``` The script will print the recall and search time for each query, followed by the average results. ### Memory Usage Comparison | System | 1M Documents | 10M Documents | 100M Documents | | --------------------- | ---------------- | ---------------- | ---------------- | | Traditional Vector DB | 3.1 GB | 31 GB | 310 GB | | **Leann** | **180 MB** | **1.2 GB** | **8.4 GB** | | **Reduction** | **94.2%** | **96.1%** | **97.3%** | ### Query Performance | Backend | Index Size | Query Time | Recall@10 | | ------------------- | ---------- | ---------- | --------- | | DiskANN | 1M docs | 12ms | 0.95 | | DiskANN + Recompute | 1M docs | 145ms | 0.98 | | HNSW | 1M docs | 8ms | 0.93 | *Benchmarks run on AMD Ryzen 7 with 32GB RAM* ## ๐Ÿ—๏ธ Architecture ``` โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Query Text โ”‚โ”€โ”€โ”€โ–ถโ”‚ Embedding โ”‚โ”€โ”€โ”€โ–ถโ”‚ Graph-based โ”‚ โ”‚ โ”‚ โ”‚ Computation โ”‚ โ”‚ Search โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ”‚ โ–ผ โ–ผ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ ZMQ Server โ”‚ โ”‚ Pruned Graph โ”‚ โ”‚ (Cached) โ”‚ โ”‚ Index โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ ``` ### Key Components 1. **๐Ÿง  Embedding Engine**: Real-time transformer inference with caching 2. **๐Ÿ“Š Graph Index**: Memory-efficient navigation structures 3. **๐Ÿ”„ Search Coordinator**: Orchestrates embedding + graph search 4. **โšก Backend Adapters**: Pluggable algorithm implementations ## ๐ŸŽ“ Supported Models & Backends ### ๐Ÿค– Embedding Models - **sentence-transformers/all-mpnet-base-v2** (default) - **sentence-transformers/all-MiniLM-L6-v2** (lightweight) - Any HuggingFace sentence-transformer model - Custom model support via API ### ๐Ÿ”ง Search Backends - **DiskANN**: Microsoft's billion-scale ANN algorithm - **HNSW**: Hierarchical Navigable Small World graphs - **Coming soon**: ScaNN, Faiss-IVF, NSG ### ๐Ÿ“ Distance Functions - **L2**: Euclidean distance for precise similarity - **Cosine**: Angular similarity for normalized vectors - **MIPS**: Maximum Inner Product Search for recommendation systems ## ๐Ÿ”ฌ Paper If you find Leann useful, please cite: **[LEANN: A Low-Storage Vector Index](https://arxiv.org/abs/2506.08276)** ```bibtex @misc{wang2025leannlowstoragevectorindex, title={LEANN: A Low-Storage Vector Index}, author={Yichuan Wang and Shu Liu and Zhifei Li and Yongji Wu and Ziming Mao and Yilong Zhao and Xiao Yan and Zhiying Xu and Yang Zhou and Ion Stoica and Sewon Min and Matei Zaharia and Joseph E. Gonzalez}, year={2025}, eprint={2506.08276}, archivePrefix={arXiv}, primaryClass={cs.DB}, url={https://arxiv.org/abs/2506.08276}, } ``` ## ๐ŸŒ Use Cases ### ๐Ÿ’ผ Enterprise RAG ```python # Handle millions of documents with limited resources builder = LeannBuilder( backend_name="diskann", distance_metric="cosine", graph_degree=64, memory_budget="4GB" ) ``` ### ๐Ÿ”ฌ Research & Experimentation ```python # Quick prototyping with different algorithms for backend in ["diskann", "hnsw"]: searcher = LeannSearcher(index_path, backend=backend) evaluate_recall(searcher, queries, ground_truth) ``` ### ๐Ÿš€ Real-time Applications ```python # Sub-second response times chat = LeannChat("knowledge.leann") response = chat.ask("What is quantum computing?") # Returns in <100ms with recompute mode ``` ## ๐Ÿค Contributing We welcome contributions! Leann is built by the community, for the community. ### Ways to Contribute - ๐Ÿ› **Bug Reports**: Found an issue? Let us know! - ๐Ÿ’ก **Feature Requests**: Have an idea? We'd love to hear it! - ๐Ÿ”ง **Code Contributions**: PRs welcome for all skill levels - ๐Ÿ“– **Documentation**: Help make Leann more accessible - ๐Ÿงช **Benchmarks**: Share your performance results ### Development Setup ```bash git clone git@github.com:yichuan520030910320/LEANN-RAG.git leann cd leann git submodule update --init --recursive uv sync --dev uv run pytest tests/ ``` ### Quick Tests ```bash # Sanity check all distance functions uv run python tests/sanity_checks/test_distance_functions.py # Verify L2 implementation uv run python tests/sanity_checks/test_l2_verification.py ``` ## โ“ FAQ ### Common Issues #### NCCL Topology Error **Problem**: You encounter `ncclTopoComputePaths` error during document processing: ``` ncclTopoComputePaths (system=, comm=comm@entry=0x5555a82fa3c0) at graph/paths.cc:688 ``` **Solution**: Set these environment variables before running your script: ```bash export NCCL_TOPO_DUMP_FILE=/tmp/nccl_topo.xml export NCCL_DEBUG=INFO export NCCL_DEBUG_SUBSYS=INIT,GRAPH export NCCL_IB_DISABLE=1 export NCCL_NET_PLUGIN=none export NCCL_SOCKET_IFNAME=ens5 ``` ## ๐Ÿ“ˆ Roadmap ### ๐ŸŽฏ Q2 2025 - [X] DiskANN backend with MIPS/L2/Cosine support - [X] HNSW backend integration - [X] Real-time embedding pipeline - [X] Memory-efficient graph pruning ### ๐Ÿš€ Q3 2025 - [ ] Advanced caching strategies - [ ] GPU-accelerated embedding computation - [ ] Add sleep-time-compute and summarize agent! to summarilze the file on computer! - [ ] Add OpenAI recompute API ### ๐ŸŒŸ Q4 2025 - [ ] Integration with LangChain/LlamaIndex - [ ] Visual similarity search - [ ] Query rewrtiting, rerank and expansion ## ๐Ÿ“„ License MIT License - see [LICENSE](LICENSE) for details. ## ๐Ÿ™ Acknowledgments - **Microsoft Research** for the DiskANN algorithm - **Meta AI** for FAISS and optimization insights - **HuggingFace** for the transformer ecosystem - **Our amazing contributors** who make this possible ---

โญ Star us on GitHub if Leann is useful for your research or applications!

Made with โค๏ธ by the Leann team