import email import os from typing import Any from llama_index.core import Document, VectorStoreIndex from llama_index.core.readers.base import BaseReader class EmlxReader(BaseReader): """ Apple Mail .emlx file reader. Reads individual .emlx files from Apple Mail's storage format. """ def __init__(self) -> None: """Initialize.""" pass def load_data(self, input_dir: str, **load_kwargs: Any) -> list[Document]: """ Load data from the input directory containing .emlx files. Args: input_dir: Directory containing .emlx files **load_kwargs: max_count (int): Maximum amount of messages to read. """ docs: list[Document] = [] max_count = load_kwargs.get("max_count", 1000) count = 0 # Walk through the directory recursively for dirpath, dirnames, filenames in os.walk(input_dir): # Skip hidden directories dirnames[:] = [d for d in dirnames if not d.startswith(".")] for filename in filenames: if count >= max_count: break if filename.endswith(".emlx"): filepath = os.path.join(dirpath, filename) try: # Read the .emlx file with open(filepath, encoding="utf-8", errors="ignore") as f: content = f.read() # .emlx files have a length prefix followed by the email content # The first line contains the length, followed by the email lines = content.split("\n", 1) if len(lines) >= 2: email_content = lines[1] # Parse the email using Python's email module try: msg = email.message_from_string(email_content) # Extract email metadata subject = msg.get("Subject", "No Subject") from_addr = msg.get("From", "Unknown") to_addr = msg.get("To", "Unknown") date = msg.get("Date", "Unknown") # Extract email body body = "" if msg.is_multipart(): for part in msg.walk(): if ( part.get_content_type() == "text/plain" or part.get_content_type() == "text/html" ): body += part.get_payload(decode=True).decode( "utf-8", errors="ignore" ) # break else: body = msg.get_payload(decode=True).decode( "utf-8", errors="ignore" ) # Create document content doc_content = f""" From: {from_addr} To: {to_addr} Subject: {subject} Date: {date} {body} """ # Create metadata metadata = { "file_path": filepath, "subject": subject, "from": from_addr, "to": to_addr, "date": date, "filename": filename, } if count == 0: print("--------------------------------") print("dir path", dirpath) print(metadata) print(doc_content) print("--------------------------------") body = [] if msg.is_multipart(): for part in msg.walk(): print( "-------------------------------- get content type -------------------------------" ) print(part.get_content_type()) print(part) # body.append(part.get_payload(decode=True).decode('utf-8', errors='ignore')) print( "-------------------------------- get content type -------------------------------" ) else: body = msg.get_payload(decode=True).decode( "utf-8", errors="ignore" ) print(body) print(body) print("--------------------------------") doc = Document(text=doc_content, metadata=metadata) docs.append(doc) count += 1 except Exception as e: print(f"!!!!!!! Error parsing email from {filepath}: {e} !!!!!!!!") continue except Exception as e: print(f"!!!!!!! Error reading file !!!!!!!! {filepath}: {e}") continue print(f"Loaded {len(docs)} email documents") return docs # Use the custom EmlxReader instead of MboxReader documents = EmlxReader().load_data( "/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data/9/Messages", max_count=1000, ) # Returns list of documents # Configure the index with larger chunk size to handle long metadata from llama_index.core.node_parser import SentenceSplitter # Create a custom text splitter with larger chunk size text_splitter = SentenceSplitter(chunk_size=2048, chunk_overlap=200) index = VectorStoreIndex.from_documents( documents, transformations=[text_splitter] ) # Initialize index with documents query_engine = index.as_query_engine() res = query_engine.query("Hows Berkeley Graduate Student Instructor") print(res)