import os from pathlib import Path from typing import List, Any from llama_index.core import VectorStoreIndex, StorageContext from llama_index.core.node_parser import SentenceSplitter # --- EMBEDDING MODEL --- from llama_index.embeddings.huggingface import HuggingFaceEmbedding import torch # --- END EMBEDDING MODEL --- # Import EmlxReader from the new module from LEANN_email_reader import EmlxReader def create_and_save_index(mail_path: str, save_dir: str = "mail_index_embedded", max_count: int = 1000): print("Creating index from mail data with embedded metadata...") documents = EmlxReader().load_data(mail_path, max_count=max_count) if not documents: print("No documents loaded. Exiting.") return None text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25) # Use facebook/contriever as the embedder embed_model = HuggingFaceEmbedding(model_name="facebook/contriever") # set on device import torch if torch.cuda.is_available(): embed_model._model.to("cuda") # set mps elif torch.backends.mps.is_available(): embed_model._model.to("mps") else: embed_model._model.to("cpu") index = VectorStoreIndex.from_documents( documents, transformations=[text_splitter], embed_model=embed_model ) os.makedirs(save_dir, exist_ok=True) index.storage_context.persist(persist_dir=save_dir) print(f"Index saved to {save_dir}") return index def load_index(save_dir: str = "mail_index_embedded"): try: storage_context = StorageContext.from_defaults(persist_dir=save_dir) index = VectorStoreIndex.from_vector_store( storage_context.vector_store, storage_context=storage_context ) print(f"Index loaded from {save_dir}") return index except Exception as e: print(f"Error loading index: {e}") return None def query_index(index, query: str): if index is None: print("No index available for querying.") return query_engine = index.as_query_engine() response = query_engine.query(query) print(f"Query: {query}") print(f"Response: {response}") def main(): mail_path = "/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data/9/Messages" save_dir = "mail_index_embedded" if os.path.exists(save_dir) and os.path.exists(os.path.join(save_dir, "vector_store.json")): print("Loading existing index...") index = load_index(save_dir) else: print("Creating new index...") index = create_and_save_index(mail_path, save_dir, max_count=10000) if index: queries = [ "Hows Berkeley Graduate Student Instructor", "how's the icloud related advertisement saying" "Whats the number of class recommend to take per semester for incoming EECS students" ] for query in queries: print("\n" + "="*50) query_index(index, query) if __name__ == "__main__": main()