import numpy as np import os import json import struct from pathlib import Path from typing import Dict, Any, List import contextlib import pickle from leann.searcher_base import BaseSearcher from leann.registry import register_backend from leann.interface import ( LeannBackendFactoryInterface, LeannBackendBuilderInterface, LeannBackendSearcherInterface ) def _get_diskann_metrics(): from . import _diskannpy as diskannpy return { "mips": diskannpy.Metric.INNER_PRODUCT, "l2": diskannpy.Metric.L2, "cosine": diskannpy.Metric.COSINE, } @contextlib.contextmanager def chdir(path): original_dir = os.getcwd() os.chdir(path) try: yield finally: os.chdir(original_dir) def _write_vectors_to_bin(data: np.ndarray, file_path: Path): num_vectors, dim = data.shape with open(file_path, 'wb') as f: f.write(struct.pack('I', num_vectors)) f.write(struct.pack('I', dim)) f.write(data.tobytes()) @register_backend("diskann") class DiskannBackend(LeannBackendFactoryInterface): @staticmethod def builder(**kwargs) -> LeannBackendBuilderInterface: return DiskannBuilder(**kwargs) @staticmethod def searcher(index_path: str, **kwargs) -> LeannBackendSearcherInterface: return DiskannSearcher(index_path, **kwargs) class DiskannBuilder(LeannBackendBuilderInterface): def __init__(self, **kwargs): self.build_params = kwargs def build(self, data: np.ndarray, ids: List[str], index_path: str, **kwargs): path = Path(index_path) index_dir = path.parent index_prefix = path.stem index_dir.mkdir(parents=True, exist_ok=True) if data.dtype != np.float32: data = data.astype(np.float32) data_filename = f"{index_prefix}_data.bin" _write_vectors_to_bin(data, index_dir / data_filename) label_map = {i: str_id for i, str_id in enumerate(ids)} label_map_file = index_dir / "leann.labels.map" with open(label_map_file, 'wb') as f: pickle.dump(label_map, f) build_kwargs = {**self.build_params, **kwargs} metric_enum = _get_diskann_metrics().get(build_kwargs.get("distance_metric", "mips").lower()) if metric_enum is None: raise ValueError(f"Unsupported distance_metric.") try: from . import _diskannpy as diskannpy with chdir(index_dir): diskannpy.build_disk_float_index( metric_enum, data_filename, index_prefix, build_kwargs.get("complexity", 64), build_kwargs.get("graph_degree", 32), build_kwargs.get("search_memory_maximum", 4.0), build_kwargs.get("build_memory_maximum", 8.0), build_kwargs.get("num_threads", 8), build_kwargs.get("pq_disk_bytes", 0), "" ) finally: temp_data_file = index_dir / data_filename if temp_data_file.exists(): os.remove(temp_data_file) class DiskannSearcher(BaseSearcher): def __init__(self, index_path: str, **kwargs): super().__init__(index_path, backend_module_name="leann_backend_diskann.embedding_server", **kwargs) from . import _diskannpy as diskannpy distance_metric = kwargs.get("distance_metric", "mips").lower() metric_enum = _get_diskann_metrics().get(distance_metric) if metric_enum is None: raise ValueError(f"Unsupported distance_metric '{distance_metric}'.") self.num_threads = kwargs.get("num_threads", 8) self.zmq_port = kwargs.get("zmq_port", 6666) full_index_prefix = str(self.index_dir / self.index_path.stem) self._index = diskannpy.StaticDiskFloatIndex( metric_enum, full_index_prefix, self.num_threads, kwargs.get("num_nodes_to_cache", 0), 1, self.zmq_port, "", "" ) def search(self, query: np.ndarray, top_k: int, **kwargs) -> Dict[str, Any]: recompute = kwargs.get("recompute_beighbor_embeddings", False) if recompute: meta_file_path = self.index_dir / f"{self.index_path.name}.meta.json" if not meta_file_path.exists(): raise RuntimeError(f"FATAL: Recompute mode enabled but metadata file not found: {meta_file_path}") zmq_port = kwargs.get("zmq_port", self.zmq_port) self._ensure_server_running(str(meta_file_path), port=zmq_port, **kwargs) if query.dtype != np.float32: query = query.astype(np.float32) labels, distances = self._index.batch_search( query, query.shape[0], top_k, kwargs.get("complexity", 256), kwargs.get("beam_width", 4), self.num_threads, kwargs.get("USE_DEFERRED_FETCH", False), kwargs.get("skip_search_reorder", False), recompute, kwargs.get("dedup_node_dis", False), kwargs.get("prune_ratio", 0.0), kwargs.get("batch_recompute", False), kwargs.get("global_pruning", False) ) string_labels = [[self.label_map.get(int_label, f"unknown_{int_label}") for int_label in batch_labels] for batch_labels in labels] return {"labels": string_labels, "distances": distances}