#!/usr/bin/env python3 """Test only Faiss HNSW""" import sys import time import psutil import gc def get_memory_usage(): process = psutil.Process() return process.memory_info().rss / 1024 / 1024 class MemoryTracker: def __init__(self, name: str): self.name = name self.start_mem = get_memory_usage() self.stages = [] def checkpoint(self, stage: str): current_mem = get_memory_usage() diff = current_mem - self.start_mem print(f"[{self.name} - {stage}] Memory: {current_mem:.1f} MB (+{diff:.1f} MB)") self.stages.append((stage, current_mem)) return current_mem def summary(self): peak_mem = max(mem for _, mem in self.stages) print(f"Peak Memory: {peak_mem:.1f} MB") return peak_mem def main(): try: import faiss except ImportError: print("Faiss is not installed.") print("Please install it with `uv pip install faiss-cpu`") sys.exit(1) from llama_index.core import ( SimpleDirectoryReader, VectorStoreIndex, StorageContext, Settings, ) from llama_index.vector_stores.faiss import FaissVectorStore from llama_index.embeddings.huggingface import HuggingFaceEmbedding tracker = MemoryTracker("Faiss HNSW") tracker.checkpoint("Initial") embed_model = HuggingFaceEmbedding(model_name="facebook/contriever") Settings.embed_model = embed_model tracker.checkpoint("After embedding model setup") d = 768 faiss_index = faiss.IndexHNSWFlat(d, 32) faiss_index.hnsw.efConstruction = 64 tracker.checkpoint("After Faiss index creation") documents = SimpleDirectoryReader( "examples/data", recursive=True, encoding="utf-8", required_exts=[".pdf", ".txt", ".md"], ).load_data() tracker.checkpoint("After document loading") print("Building Faiss HNSW index...") vector_store = FaissVectorStore(faiss_index=faiss_index) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents(documents, storage_context=storage_context) tracker.checkpoint("After index building") index.storage_context.persist("./storage_faiss") tracker.checkpoint("After index saving") query_engine = index.as_query_engine(similarity_top_k=20) queries = [ "什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发", "What is LEANN and how does it work?", "华为诺亚方舟实验室的主要研究内容", ] for i, query in enumerate(queries): start_time = time.time() _ = query_engine.query(query) query_time = time.time() - start_time print(f"Query {i + 1} time: {query_time:.3f}s") tracker.checkpoint(f"After query {i + 1}") peak_memory = tracker.summary() print(f"Peak Memory: {peak_memory:.1f} MB") if __name__ == "__main__": main()