Files
yichuan520030910320 46f6cc100b Initial commit
2025-06-30 09:05:05 +00:00

23 lines
862 B
Python

from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor import oneshot
# Select quantization algorithm. In this case, we:
# * apply SmoothQuant to make the activations easier to quantize
# * quantize the weights to int8 with GPTQ (static per channel)
# * quantize the activations to int8 (dynamic per token)
recipe = [
SmoothQuantModifier(smoothing_strength=0.8),
GPTQModifier(scheme="W8A8", targets="Linear", ignore=["lm_head"]),
]
# Apply quantization using the built in open_platypus dataset.
# * See examples for demos showing how to pass a custom calibration set
oneshot(
model="facebook/contriever",
dataset="open_platypus",
recipe=recipe,
output_dir="contriever-INT4",
max_seq_length=2048,
num_calibration_samples=512,
)