* Add ty type checker to CI and fix type errors - Add ty (Astral's fast Python type checker) to GitHub CI workflow - Fix type annotations across all RAG apps: - Update load_data return types from list[str] to list[dict[str, Any]] - Fix base_rag_example.py to properly handle dict format from create_text_chunks - Fix type errors in leann-core: - chunking_utils.py: Add explicit type annotations - cli.py: Fix return type annotations for PDF extraction functions - interactive_utils.py: Fix readline import type handling - Fix type errors in apps: - wechat_history.py: Fix return type annotations - document_rag.py, code_rag.py: Replace **kwargs with explicit arguments - Add ty configuration to pyproject.toml This resolves the bug introduced in PR #157 where create_text_chunks() changed to return list[dict] but callers were not updated. * Fix remaining ty type errors - Fix slack_mcp_reader.py channel parameter can be None - Fix embedding_compute.py ContextProp type issue - Fix searcher_base.py method override signatures - Fix chunking_utils.py chunk_text assignment - Fix slack_rag.py and twitter_rag.py return types - Fix email.py and image_rag.py method overrides * Fix multimodal benchmark scripts type errors - Fix undefined LeannRetriever -> LeannMultiVector - Add proper type casts for HuggingFace Dataset iteration - Cast task config values to correct types - Add type annotations for dataset row dicts * Enable ty check for multimodal scripts in CI All type errors in multimodal scripts have been fixed, so we can now include them in the CI type checking. * Fix all test type errors and enable ty check on tests - Fix test_basic.py: search() takes str not list - Fix test_cli_prompt_template.py: add type: ignore for Mock assignments - Fix test_prompt_template_persistence.py: match BaseSearcher.search signature - Fix test_prompt_template_e2e.py: add type narrowing asserts after skip - Fix test_readme_examples.py: use explicit kwargs instead of **model_args - Fix metadata_filter.py: allow Optional[MetadataFilters] - Update CI to run ty check on tests * Format code with ruff * Format searcher_base.py
LEANN Tests
This directory contains automated tests for the LEANN project using pytest.
Test Files
test_readme_examples.py
Tests the examples shown in README.md:
- The basic example code that users see first (parametrized for both HNSW and DiskANN backends)
- Import statements work correctly
- Different backend options (HNSW, DiskANN)
- Different LLM configuration options (parametrized for both backends)
- All main README examples are tested with both HNSW and DiskANN backends using pytest parametrization
test_basic.py
Basic functionality tests that verify:
- All packages can be imported correctly
- C++ extensions (FAISS, DiskANN) load properly
- Basic index building and searching works for both HNSW and DiskANN backends
- Uses parametrized tests to test both backends
test_document_rag.py
Tests the document RAG example functionality:
- Tests with facebook/contriever embeddings
- Tests with OpenAI embeddings (if API key is available)
- Tests error handling with invalid parameters
- Verifies that normalized embeddings are detected and cosine distance is used
test_diskann_partition.py
Tests DiskANN graph partitioning functionality:
- Tests DiskANN index building without partitioning (baseline)
- Tests automatic graph partitioning with
is_recompute=True - Verifies that partition files are created and large files are cleaned up for storage saving
- Tests search functionality with partitioned indices
- Validates medoid and max_base_norm file generation and usage
- Includes performance comparison between DiskANN (with partition) and HNSW
- Note: These tests are skipped in CI due to hardware requirements and computation time
test_prompt_template_e2e.py
Integration tests for prompt template feature with live embedding services:
- Tests prompt template prepending with EmbeddingGemma (OpenAI-compatible API via LM Studio)
- Tests hybrid token limit discovery (Ollama dynamic detection, registry fallback, default)
- Tests LM Studio SDK bridge for automatic context length detection (requires Node.js + @lmstudio/sdk)
- Note: These tests require live services (LM Studio, Ollama) and are marked with
@pytest.mark.integration - Important: Prompt templates are ONLY for EmbeddingGemma and similar task-specific models, NOT regular embedding models
Running Tests
Install test dependencies:
# Using uv dependency groups (tools only)
uv sync --only-group test
Run all tests:
pytest tests/
# Or with coverage
pytest tests/ --cov=leann --cov-report=html
# Run in parallel (faster)
pytest tests/ -n auto
Run specific tests:
# Only basic tests
pytest tests/test_basic.py
# Only tests that don't require OpenAI
pytest tests/ -m "not openai"
# Skip slow tests
pytest tests/ -m "not slow"
# Skip integration tests (that require live services)
pytest tests/ -m "not integration"
# Run only integration tests (requires LM Studio or Ollama running)
pytest tests/test_prompt_template_e2e.py -v -s
# Run DiskANN partition tests (requires local machine, not CI)
pytest tests/test_diskann_partition.py
Run with specific backend:
# Test only HNSW backend
pytest tests/test_basic.py::test_backend_basic[hnsw]
pytest tests/test_readme_examples.py::test_readme_basic_example[hnsw]
# Test only DiskANN backend
pytest tests/test_basic.py::test_backend_basic[diskann]
pytest tests/test_readme_examples.py::test_readme_basic_example[diskann]
# All DiskANN tests (parametrized + specialized partition tests)
pytest tests/ -k diskann
CI/CD Integration
Tests are automatically run in GitHub Actions:
- After building wheel packages
- On multiple Python versions (3.9 - 3.13)
- On both Ubuntu and macOS
- Using pytest with appropriate markers and flags
pytest.ini Configuration
The pytest.ini file configures:
- Test discovery paths
- Default timeout (600 seconds)
- Environment variables (HF_HUB_DISABLE_SYMLINKS, TOKENIZERS_PARALLELISM)
- Custom markers for slow and OpenAI tests
- Verbose output with short tracebacks
Integration Test Prerequisites
Integration tests (test_prompt_template_e2e.py) require live services:
Required:
- LM Studio running at
http://localhost:1234with EmbeddingGemma model loaded
Optional:
- Ollama running at
http://localhost:11434for token limit detection tests - Node.js + @lmstudio/sdk installed (
npm install -g @lmstudio/sdk) for SDK bridge tests
Tests gracefully skip if services are unavailable.
Known Issues
- OpenAI tests are automatically skipped if no API key is provided
- Integration tests require live embedding services and may fail due to proxy settings (set
unset ALL_PROXY all_proxyif needed)