Files
yichuan520030910320 46f6cc100b Initial commit
2025-06-30 09:05:05 +00:00

801 lines
28 KiB
C++

/**
* MIT License
*
* Copyright (c) 2017 Thibaut Goetghebuer-Planchon <tessil@gmx.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TSL_SPARSE_MAP_H
#define TSL_SPARSE_MAP_H
#include <cstddef>
#include <functional>
#include <initializer_list>
#include <memory>
#include <type_traits>
#include <utility>
#include "sparse_hash.h"
namespace tsl {
/**
* Implementation of a sparse hash map using open-addressing with quadratic
* probing. The goal on the hash map is to be the most memory efficient
* possible, even at low load factor, while keeping reasonable performances.
*
* `GrowthPolicy` defines how the map grows and consequently how a hash value is
* mapped to a bucket. By default the map uses
* `tsl::sh::power_of_two_growth_policy`. This policy keeps the number of
* buckets to a power of two and uses a mask to map the hash to a bucket instead
* of the slow modulo. Other growth policies are available and you may define
* your own growth policy, check `tsl::sh::power_of_two_growth_policy` for the
* interface.
*
* `ExceptionSafety` defines the exception guarantee provided by the class. By
* default only the basic exception safety is guaranteed which mean that all
* resources used by the hash map will be freed (no memory leaks) but the hash
* map may end-up in an undefined state if an exception is thrown (undefined
* here means that some elements may be missing). This can ONLY happen on rehash
* (either on insert or if `rehash` is called explicitly) and will occur if the
* Allocator can't allocate memory (`std::bad_alloc`) or if the copy constructor
* (when a nothrow move constructor is not available) throws an exception. This
* can be avoided by calling `reserve` beforehand. This basic guarantee is
* similar to the one of `google::sparse_hash_map` and `spp::sparse_hash_map`.
* It is possible to ask for the strong exception guarantee with
* `tsl::sh::exception_safety::strong`, the drawback is that the map will be
* slower on rehashes and will also need more memory on rehashes.
*
* `Sparsity` defines how much the hash set will compromise between insertion
* speed and memory usage. A high sparsity means less memory usage but longer
* insertion times, and vice-versa for low sparsity. The default
* `tsl::sh::sparsity::medium` sparsity offers a good compromise. It doesn't
* change the lookup speed.
*
* `Key` and `T` must be nothrow move constructible and/or copy constructible.
*
* If the destructor of `Key` or `T` throws an exception, the behaviour of the
* class is undefined.
*
* Iterators invalidation:
* - clear, operator=, reserve, rehash: always invalidate the iterators.
* - insert, emplace, emplace_hint, operator[]: if there is an effective
* insert, invalidate the iterators.
* - erase: always invalidate the iterators.
*/
template <class Key, class T, class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<std::pair<Key, T>>,
class GrowthPolicy = tsl::sh::power_of_two_growth_policy<2>,
tsl::sh::exception_safety ExceptionSafety =
tsl::sh::exception_safety::basic,
tsl::sh::sparsity Sparsity = tsl::sh::sparsity::medium>
class sparse_map {
private:
template <typename U>
using has_is_transparent = tsl::detail_sparse_hash::has_is_transparent<U>;
class KeySelect {
public:
using key_type = Key;
const key_type &operator()(
const std::pair<Key, T> &key_value) const noexcept {
return key_value.first;
}
key_type &operator()(std::pair<Key, T> &key_value) noexcept {
return key_value.first;
}
};
class ValueSelect {
public:
using value_type = T;
const value_type &operator()(
const std::pair<Key, T> &key_value) const noexcept {
return key_value.second;
}
value_type &operator()(std::pair<Key, T> &key_value) noexcept {
return key_value.second;
}
};
using ht = detail_sparse_hash::sparse_hash<
std::pair<Key, T>, KeySelect, ValueSelect, Hash, KeyEqual, Allocator,
GrowthPolicy, ExceptionSafety, Sparsity, tsl::sh::probing::quadratic>;
public:
using key_type = typename ht::key_type;
using mapped_type = T;
using value_type = typename ht::value_type;
using size_type = typename ht::size_type;
using difference_type = typename ht::difference_type;
using hasher = typename ht::hasher;
using key_equal = typename ht::key_equal;
using allocator_type = typename ht::allocator_type;
using reference = typename ht::reference;
using const_reference = typename ht::const_reference;
using pointer = typename ht::pointer;
using const_pointer = typename ht::const_pointer;
using iterator = typename ht::iterator;
using const_iterator = typename ht::const_iterator;
public:
/*
* Constructors
*/
sparse_map() : sparse_map(ht::DEFAULT_INIT_BUCKET_COUNT) {}
explicit sparse_map(size_type bucket_count, const Hash &hash = Hash(),
const KeyEqual &equal = KeyEqual(),
const Allocator &alloc = Allocator())
: m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR) {}
sparse_map(size_type bucket_count, const Allocator &alloc)
: sparse_map(bucket_count, Hash(), KeyEqual(), alloc) {}
sparse_map(size_type bucket_count, const Hash &hash, const Allocator &alloc)
: sparse_map(bucket_count, hash, KeyEqual(), alloc) {}
explicit sparse_map(const Allocator &alloc)
: sparse_map(ht::DEFAULT_INIT_BUCKET_COUNT, alloc) {}
template <class InputIt>
sparse_map(InputIt first, InputIt last,
size_type bucket_count = ht::DEFAULT_INIT_BUCKET_COUNT,
const Hash &hash = Hash(), const KeyEqual &equal = KeyEqual(),
const Allocator &alloc = Allocator())
: sparse_map(bucket_count, hash, equal, alloc) {
insert(first, last);
}
template <class InputIt>
sparse_map(InputIt first, InputIt last, size_type bucket_count,
const Allocator &alloc)
: sparse_map(first, last, bucket_count, Hash(), KeyEqual(), alloc) {}
template <class InputIt>
sparse_map(InputIt first, InputIt last, size_type bucket_count,
const Hash &hash, const Allocator &alloc)
: sparse_map(first, last, bucket_count, hash, KeyEqual(), alloc) {}
sparse_map(std::initializer_list<value_type> init,
size_type bucket_count = ht::DEFAULT_INIT_BUCKET_COUNT,
const Hash &hash = Hash(), const KeyEqual &equal = KeyEqual(),
const Allocator &alloc = Allocator())
: sparse_map(init.begin(), init.end(), bucket_count, hash, equal, alloc) {
}
sparse_map(std::initializer_list<value_type> init, size_type bucket_count,
const Allocator &alloc)
: sparse_map(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(),
alloc) {}
sparse_map(std::initializer_list<value_type> init, size_type bucket_count,
const Hash &hash, const Allocator &alloc)
: sparse_map(init.begin(), init.end(), bucket_count, hash, KeyEqual(),
alloc) {}
sparse_map &operator=(std::initializer_list<value_type> ilist) {
m_ht.clear();
m_ht.reserve(ilist.size());
m_ht.insert(ilist.begin(), ilist.end());
return *this;
}
allocator_type get_allocator() const { return m_ht.get_allocator(); }
/*
* Iterators
*/
iterator begin() noexcept { return m_ht.begin(); }
const_iterator begin() const noexcept { return m_ht.begin(); }
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
iterator end() noexcept { return m_ht.end(); }
const_iterator end() const noexcept { return m_ht.end(); }
const_iterator cend() const noexcept { return m_ht.cend(); }
/*
* Capacity
*/
bool empty() const noexcept { return m_ht.empty(); }
size_type size() const noexcept { return m_ht.size(); }
size_type max_size() const noexcept { return m_ht.max_size(); }
/*
* Modifiers
*/
void clear() noexcept { m_ht.clear(); }
std::pair<iterator, bool> insert(const value_type &value) {
return m_ht.insert(value);
}
template <class P, typename std::enable_if<std::is_constructible<
value_type, P &&>::value>::type * = nullptr>
std::pair<iterator, bool> insert(P &&value) {
return m_ht.emplace(std::forward<P>(value));
}
std::pair<iterator, bool> insert(value_type &&value) {
return m_ht.insert(std::move(value));
}
iterator insert(const_iterator hint, const value_type &value) {
return m_ht.insert_hint(hint, value);
}
template <class P, typename std::enable_if<std::is_constructible<
value_type, P &&>::value>::type * = nullptr>
iterator insert(const_iterator hint, P &&value) {
return m_ht.emplace_hint(hint, std::forward<P>(value));
}
iterator insert(const_iterator hint, value_type &&value) {
return m_ht.insert_hint(hint, std::move(value));
}
template <class InputIt>
void insert(InputIt first, InputIt last) {
m_ht.insert(first, last);
}
void insert(std::initializer_list<value_type> ilist) {
m_ht.insert(ilist.begin(), ilist.end());
}
template <class M>
std::pair<iterator, bool> insert_or_assign(const key_type &k, M &&obj) {
return m_ht.insert_or_assign(k, std::forward<M>(obj));
}
template <class M>
std::pair<iterator, bool> insert_or_assign(key_type &&k, M &&obj) {
return m_ht.insert_or_assign(std::move(k), std::forward<M>(obj));
}
template <class M>
iterator insert_or_assign(const_iterator hint, const key_type &k, M &&obj) {
return m_ht.insert_or_assign(hint, k, std::forward<M>(obj));
}
template <class M>
iterator insert_or_assign(const_iterator hint, key_type &&k, M &&obj) {
return m_ht.insert_or_assign(hint, std::move(k), std::forward<M>(obj));
}
/**
* Due to the way elements are stored, emplace will need to move or copy the
* key-value once. The method is equivalent to
* `insert(value_type(std::forward<Args>(args)...));`.
*
* Mainly here for compatibility with the `std::unordered_map` interface.
*/
template <class... Args>
std::pair<iterator, bool> emplace(Args &&...args) {
return m_ht.emplace(std::forward<Args>(args)...);
}
/**
* Due to the way elements are stored, emplace_hint will need to move or copy
* the key-value once. The method is equivalent to `insert(hint,
* value_type(std::forward<Args>(args)...));`.
*
* Mainly here for compatibility with the `std::unordered_map` interface.
*/
template <class... Args>
iterator emplace_hint(const_iterator hint, Args &&...args) {
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
}
template <class... Args>
std::pair<iterator, bool> try_emplace(const key_type &k, Args &&...args) {
return m_ht.try_emplace(k, std::forward<Args>(args)...);
}
template <class... Args>
std::pair<iterator, bool> try_emplace(key_type &&k, Args &&...args) {
return m_ht.try_emplace(std::move(k), std::forward<Args>(args)...);
}
template <class... Args>
iterator try_emplace(const_iterator hint, const key_type &k, Args &&...args) {
return m_ht.try_emplace_hint(hint, k, std::forward<Args>(args)...);
}
template <class... Args>
iterator try_emplace(const_iterator hint, key_type &&k, Args &&...args) {
return m_ht.try_emplace_hint(hint, std::move(k),
std::forward<Args>(args)...);
}
iterator erase(iterator pos) { return m_ht.erase(pos); }
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
iterator erase(const_iterator first, const_iterator last) {
return m_ht.erase(first, last);
}
size_type erase(const key_type &key) { return m_ht.erase(key); }
/**
* Use the hash value `precalculated_hash` instead of hashing the key. The
* hash value should be the same as `hash_function()(key)`, otherwise the
* behaviour is undefined. Useful to speed-up the lookup if you already have
* the hash.
*/
size_type erase(const key_type &key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef
* `KeyEqual::is_transparent` exists. If so, `K` must be hashable and
* comparable to `Key`.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
size_type erase(const K &key) {
return m_ht.erase(key);
}
/**
* @copydoc erase(const K& key)
*
* Use the hash value `precalculated_hash` instead of hashing the key. The
* hash value should be the same as `hash_function()(key)`, otherwise the
* behaviour is undefined. Useful to speed-up the lookup if you already have
* the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
size_type erase(const K &key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
void swap(sparse_map &other) { other.m_ht.swap(m_ht); }
/*
* Lookup
*/
T &at(const Key &key) { return m_ht.at(key); }
/**
* Use the hash value `precalculated_hash` instead of hashing the key. The
* hash value should be the same as `hash_function()(key)`, otherwise the
* behaviour is undefined. Useful to speed-up the lookup if you already have
* the hash.
*/
T &at(const Key &key, std::size_t precalculated_hash) {
return m_ht.at(key, precalculated_hash);
}
const T &at(const Key &key) const { return m_ht.at(key); }
/**
* @copydoc at(const Key& key, std::size_t precalculated_hash)
*/
const T &at(const Key &key, std::size_t precalculated_hash) const {
return m_ht.at(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef
* `KeyEqual::is_transparent` exists. If so, `K` must be hashable and
* comparable to `Key`.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
T &at(const K &key) {
return m_ht.at(key);
}
/**
* @copydoc at(const K& key)
*
* Use the hash value `precalculated_hash` instead of hashing the key. The
* hash value should be the same as `hash_function()(key)`, otherwise the
* behaviour is undefined. Useful to speed-up the lookup if you already have
* the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
T &at(const K &key, std::size_t precalculated_hash) {
return m_ht.at(key, precalculated_hash);
}
/**
* @copydoc at(const K& key)
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
const T &at(const K &key) const {
return m_ht.at(key);
}
/**
* @copydoc at(const K& key, std::size_t precalculated_hash)
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
const T &at(const K &key, std::size_t precalculated_hash) const {
return m_ht.at(key, precalculated_hash);
}
T &operator[](const Key &key) { return m_ht[key]; }
T &operator[](Key &&key) { return m_ht[std::move(key)]; }
size_type count(const Key &key) const { return m_ht.count(key); }
/**
* Use the hash value `precalculated_hash` instead of hashing the key. The
* hash value should be the same as `hash_function()(key)`, otherwise the
* behaviour is undefined. Useful to speed-up the lookup if you already have
* the hash.
*/
size_type count(const Key &key, std::size_t precalculated_hash) const {
return m_ht.count(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef
* `KeyEqual::is_transparent` exists. If so, `K` must be hashable and
* comparable to `Key`.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
size_type count(const K &key) const {
return m_ht.count(key);
}
/**
* @copydoc count(const K& key) const
*
* Use the hash value `precalculated_hash` instead of hashing the key. The
* hash value should be the same as `hash_function()(key)`, otherwise the
* behaviour is undefined. Useful to speed-up the lookup if you already have
* the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
size_type count(const K &key, std::size_t precalculated_hash) const {
return m_ht.count(key, precalculated_hash);
}
iterator find(const Key &key) { return m_ht.find(key); }
/**
* Use the hash value `precalculated_hash` instead of hashing the key. The
* hash value should be the same as `hash_function()(key)`, otherwise the
* behaviour is undefined. Useful to speed-up the lookup if you already have
* the hash.
*/
iterator find(const Key &key, std::size_t precalculated_hash) {
return m_ht.find(key, precalculated_hash);
}
const_iterator find(const Key &key) const { return m_ht.find(key); }
/**
* @copydoc find(const Key& key, std::size_t precalculated_hash)
*/
const_iterator find(const Key &key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef
* `KeyEqual::is_transparent` exists. If so, `K` must be hashable and
* comparable to `Key`.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
iterator find(const K &key) {
return m_ht.find(key);
}
/**
* @copydoc find(const K& key)
*
* Use the hash value `precalculated_hash` instead of hashing the key. The
* hash value should be the same as `hash_function()(key)`, otherwise the
* behaviour is undefined. Useful to speed-up the lookup if you already have
* the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
iterator find(const K &key, std::size_t precalculated_hash) {
return m_ht.find(key, precalculated_hash);
}
/**
* @copydoc find(const K& key)
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
const_iterator find(const K &key) const {
return m_ht.find(key);
}
/**
* @copydoc find(const K& key)
*
* Use the hash value `precalculated_hash` instead of hashing the key. The
* hash value should be the same as `hash_function()(key)`, otherwise the
* behaviour is undefined. Useful to speed-up the lookup if you already have
* the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
const_iterator find(const K &key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
bool contains(const Key &key) const { return m_ht.contains(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup if you already have the hash.
*/
bool contains(const Key &key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef
* KeyEqual::is_transparent exists. If so, K must be hashable and comparable
* to Key.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
bool contains(const K &key) const {
return m_ht.contains(key);
}
/**
* @copydoc contains(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The
* hash value should be the same as hash_function()(key). Useful to speed-up
* the lookup if you already have the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
bool contains(const K &key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
std::pair<iterator, iterator> equal_range(const Key &key) {
return m_ht.equal_range(key);
}
/**
* Use the hash value `precalculated_hash` instead of hashing the key. The
* hash value should be the same as `hash_function()(key)`, otherwise the
* behaviour is undefined. Useful to speed-up the lookup if you already have
* the hash.
*/
std::pair<iterator, iterator> equal_range(const Key &key,
std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
std::pair<const_iterator, const_iterator> equal_range(const Key &key) const {
return m_ht.equal_range(key);
}
/**
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
*/
std::pair<const_iterator, const_iterator> equal_range(
const Key &key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef
* `KeyEqual::is_transparent` exists. If so, `K` must be hashable and
* comparable to `Key`.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
std::pair<iterator, iterator> equal_range(const K &key) {
return m_ht.equal_range(key);
}
/**
* @copydoc equal_range(const K& key)
*
* Use the hash value `precalculated_hash` instead of hashing the key. The
* hash value should be the same as `hash_function()(key)`, otherwise the
* behaviour is undefined. Useful to speed-up the lookup if you already have
* the hash.
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
std::pair<iterator, iterator> equal_range(const K &key,
std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* @copydoc equal_range(const K& key)
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K &key) const {
return m_ht.equal_range(key);
}
/**
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
*/
template <
class K, class KE = KeyEqual,
typename std::enable_if<has_is_transparent<KE>::value>::type * = nullptr>
std::pair<const_iterator, const_iterator> equal_range(
const K &key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/*
* Bucket interface
*/
size_type bucket_count() const { return m_ht.bucket_count(); }
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
/*
* Hash policy
*/
float load_factor() const { return m_ht.load_factor(); }
float max_load_factor() const { return m_ht.max_load_factor(); }
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
void rehash(size_type count) { m_ht.rehash(count); }
void reserve(size_type count) { m_ht.reserve(count); }
/*
* Observers
*/
hasher hash_function() const { return m_ht.hash_function(); }
key_equal key_eq() const { return m_ht.key_eq(); }
/*
* Other
*/
/**
* Convert a `const_iterator` to an `iterator`.
*/
iterator mutable_iterator(const_iterator pos) {
return m_ht.mutable_iterator(pos);
}
/**
* Serialize the map through the `serializer` parameter.
*
* The `serializer` parameter must be a function object that supports the
* following call:
* - `template<typename U> void operator()(const U& value);` where the types
* `std::uint64_t`, `float` and `std::pair<Key, T>` must be supported for U.
*
* The implementation leaves binary compatibility (endianness, IEEE 754 for
* floats, ...) of the types it serializes in the hands of the `Serializer`
* function object if compatibility is required.
*/
template <class Serializer>
void serialize(Serializer &serializer) const {
m_ht.serialize(serializer);
}
/**
* Deserialize a previously serialized map through the `deserializer`
* parameter.
*
* The `deserializer` parameter must be a function object that supports the
* following calls:
* - `template<typename U> U operator()();` where the types `std::uint64_t`,
* `float` and `std::pair<Key, T>` must be supported for U.
*
* If the deserialized hash map type is hash compatible with the serialized
* map, the deserialization process can be sped up by setting
* `hash_compatible` to true. To be hash compatible, the Hash, KeyEqual and
* GrowthPolicy must behave the same way than the ones used on the serialized
* map. The `std::size_t` must also be of the same size as the one on the
* platform used to serialize the map. If these criteria are not met, the
* behaviour is undefined with `hash_compatible` sets to true.
*
* The behaviour is undefined if the type `Key` and `T` of the `sparse_map`
* are not the same as the types used during serialization.
*
* The implementation leaves binary compatibility (endianness, IEEE 754 for
* floats, size of int, ...) of the types it deserializes in the hands of the
* `Deserializer` function object if compatibility is required.
*/
template <class Deserializer>
static sparse_map deserialize(Deserializer &deserializer,
bool hash_compatible = false) {
sparse_map map(0);
map.m_ht.deserialize(deserializer, hash_compatible);
return map;
}
friend bool operator==(const sparse_map &lhs, const sparse_map &rhs) {
if (lhs.size() != rhs.size()) {
return false;
}
for (const auto &element_lhs : lhs) {
const auto it_element_rhs = rhs.find(element_lhs.first);
if (it_element_rhs == rhs.cend() ||
element_lhs.second != it_element_rhs->second) {
return false;
}
}
return true;
}
friend bool operator!=(const sparse_map &lhs, const sparse_map &rhs) {
return !operator==(lhs, rhs);
}
friend void swap(sparse_map &lhs, sparse_map &rhs) { lhs.swap(rhs); }
private:
ht m_ht;
};
/**
* Same as `tsl::sparse_map<Key, T, Hash, KeyEqual, Allocator,
* tsl::sh::prime_growth_policy>`.
*/
template <class Key, class T, class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<std::pair<Key, T>>>
using sparse_pg_map =
sparse_map<Key, T, Hash, KeyEqual, Allocator, tsl::sh::prime_growth_policy>;
} // end namespace tsl
#endif