Files
LEANN/test/micro_tpt.py
2025-07-16 17:15:51 -07:00

630 lines
24 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# python embedd_micro.py --use_int8 Fastest
import argparse
import time
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple
import numpy as np
import torch
from torch import nn
from transformers import AutoModel, BitsAndBytesConfig
from tqdm import tqdm
from contextlib import contextmanager
@dataclass
class BenchmarkConfig:
model_path: str
batch_sizes: List[int]
seq_length: int
num_runs: int
use_fp16: bool = True
use_int4: bool = False
use_int8: bool = False # Add this parameter
use_cuda_graphs: bool = False
use_flash_attention: bool = False
use_linear8bitlt: bool = False
class GraphContainer:
"""Container for managing graphs for different batch sizes (CUDA graphs on NVIDIA, regular on others)."""
def __init__(self, model: nn.Module, seq_length: int):
self.model = model
self.seq_length = seq_length
self.graphs: Dict[int, 'GraphWrapper'] = {}
def get_or_create(self, batch_size: int) -> 'GraphWrapper':
if batch_size not in self.graphs:
self.graphs[batch_size] = GraphWrapper(
self.model, batch_size, self.seq_length
)
return self.graphs[batch_size]
class GraphWrapper:
"""Wrapper for graph capture and replay (CUDA graphs on NVIDIA, regular on others)."""
def __init__(self, model: nn.Module, batch_size: int, seq_length: int):
self.model = model
self.device = self._get_device()
self.static_input = self._create_random_batch(batch_size, seq_length)
self.static_attention_mask = torch.ones_like(self.static_input)
# Warm up
self._warmup()
# Only use CUDA graphs on NVIDIA GPUs
if torch.cuda.is_available() and hasattr(torch.cuda, 'CUDAGraph'):
# Capture graph
self.graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(self.graph):
self.static_output = self.model(
input_ids=self.static_input,
attention_mask=self.static_attention_mask
)
self.use_cuda_graph = True
else:
# For MPS or CPU, just store the model
self.use_cuda_graph = False
self.static_output = None
def _get_device(self) -> str:
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
return "mps"
else:
return "cpu"
def _create_random_batch(self, batch_size: int, seq_length: int) -> torch.Tensor:
return torch.randint(
0, 1000, (batch_size, seq_length),
device=self.device,
dtype=torch.long
)
def _warmup(self, num_warmup: int = 3):
with torch.no_grad():
for _ in range(num_warmup):
self.model(
input_ids=self.static_input,
attention_mask=self.static_attention_mask
)
def __call__(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
if self.use_cuda_graph:
self.static_input.copy_(input_ids)
self.static_attention_mask.copy_(attention_mask)
self.graph.replay()
return self.static_output
else:
# For MPS/CPU, just run normally
return self.model(input_ids=input_ids, attention_mask=attention_mask)
class ModelOptimizer:
"""Applies various optimizations to the model."""
@staticmethod
def optimize(model: nn.Module, config: BenchmarkConfig) -> nn.Module:
print("\nApplying model optimizations:")
if model is None:
raise ValueError("Cannot optimize None model")
# Move to GPU
if torch.cuda.is_available():
model = model.cuda()
device = "cuda"
elif torch.backends.mps.is_available():
model = model.to("mps")
device = "mps"
else:
model = model.cpu()
device = "cpu"
print(f"- Model moved to {device}")
# FP16
if config.use_fp16 and not config.use_int4:
model = model.half()
# use torch compile
model = torch.compile(model)
print("- Using FP16 precision")
# Check if using SDPA (only on CUDA)
if torch.cuda.is_available() and torch.version.cuda and float(torch.version.cuda[:3]) >= 11.6:
if hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
print("- Using PyTorch SDPA (scaled_dot_product_attention)")
else:
print("- PyTorch SDPA not available")
# Flash Attention (only on CUDA)
if config.use_flash_attention and torch.cuda.is_available():
try:
from flash_attn.flash_attention import FlashAttention
print("- Flash Attention 2 available")
if hasattr(model.config, "attention_mode"):
model.config.attention_mode = "flash_attention_2"
print(" - Enabled Flash Attention 2 mode")
except ImportError:
print("- Flash Attention not available")
# Memory efficient attention (only on CUDA)
if torch.cuda.is_available():
try:
from xformers.ops import memory_efficient_attention
if hasattr(model, 'enable_xformers_memory_efficient_attention'):
model.enable_xformers_memory_efficient_attention()
print("- Enabled xformers memory efficient attention")
else:
print("- Model doesn't support xformers")
except (ImportError, AttributeError):
print("- Xformers not available")
model.eval()
print("- Model set to eval mode")
return model
class Timer:
"""Handles accurate GPU timing using GPU events or CPU timing."""
def __init__(self):
if torch.cuda.is_available():
self.start_event = torch.cuda.Event(enable_timing=True)
self.end_event = torch.cuda.Event(enable_timing=True)
self.use_gpu_timing = True
elif torch.backends.mps.is_available():
# MPS doesn't have events, use CPU timing
self.use_gpu_timing = False
else:
# CPU timing
self.use_gpu_timing = False
@contextmanager
def timing(self):
if self.use_gpu_timing:
self.start_event.record()
yield
self.end_event.record()
self.end_event.synchronize()
else:
# Use CPU timing for MPS/CPU
start_time = time.time()
yield
self.cpu_elapsed = time.time() - start_time
def elapsed_time(self) -> float:
if self.use_gpu_timing:
return self.start_event.elapsed_time(self.end_event) / 1000 # ms to seconds
else:
return self.cpu_elapsed
class Benchmark:
"""Main benchmark runner."""
def __init__(self, config: BenchmarkConfig):
self.config = config
try:
self.model = self._load_model()
if self.model is None:
raise ValueError("Model initialization failed - model is None")
# Only use CUDA graphs on NVIDIA GPUs
if config.use_cuda_graphs and torch.cuda.is_available():
self.graphs = GraphContainer(self.model, config.seq_length)
else:
self.graphs = None
self.timer = Timer()
except Exception as e:
print(f"ERROR in benchmark initialization: {str(e)}")
raise
def _load_model(self) -> nn.Module:
print(f"Loading model from {self.config.model_path}...")
try:
# Int4 quantization using HuggingFace integration
if self.config.use_int4:
import bitsandbytes as bnb
print(f"- bitsandbytes version: {bnb.__version__}")
# 检查是否使用自定义的8bit量化
if hasattr(self.config, 'use_linear8bitlt') and self.config.use_linear8bitlt:
print("- Using custom Linear8bitLt replacement for all linear layers")
# 加载原始模型(不使用量化配置)
import bitsandbytes as bnb
import torch
# set default to half
torch.set_default_dtype(torch.float16)
compute_dtype = torch.float16 if self.config.use_fp16 else torch.float32
model = AutoModel.from_pretrained(
self.config.model_path,
torch_dtype=compute_dtype,
)
# 定义替换函数
def replace_linear_with_linear8bitlt(model):
"""递归地将模型中的所有nn.Linear层替换为Linear8bitLt"""
for name, module in list(model.named_children()):
if isinstance(module, nn.Linear):
# 获取原始线性层的参数
in_features = module.in_features
out_features = module.out_features
bias = module.bias is not None
# 创建8bit线性层
# print size
print(f"in_features: {in_features}, out_features: {out_features}")
new_module = bnb.nn.Linear8bitLt(
in_features,
out_features,
bias=bias,
has_fp16_weights=False
)
# 复制权重和偏置
new_module.weight.data = module.weight.data
if bias:
new_module.bias.data = module.bias.data
# 替换模块
setattr(model, name, new_module)
else:
# 递归处理子模块
replace_linear_with_linear8bitlt(module)
return model
# 替换所有线性层
model = replace_linear_with_linear8bitlt(model)
# add torch compile
model = torch.compile(model)
# 将模型移到GPU量化发生在这里
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
model = model.to(device)
print("- All linear layers replaced with Linear8bitLt")
else:
# 使用原来的Int4量化方法
print("- Using bitsandbytes for Int4 quantization")
# Create quantization config
compute_dtype = torch.float16 if self.config.use_fp16 else torch.float32
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
print("- Quantization config:", quantization_config)
# Load model directly with quantization config
model = AutoModel.from_pretrained(
self.config.model_path,
quantization_config=quantization_config,
torch_dtype=compute_dtype,
device_map="auto" # Let HF decide on device mapping
)
# Check if model loaded successfully
if model is None:
raise ValueError("Model loading returned None")
print(f"- Model type: {type(model)}")
# Apply optimizations directly here
print("\nApplying model optimizations:")
if hasattr(self.config, 'use_linear8bitlt') and self.config.use_linear8bitlt:
print("- Model moved to GPU with Linear8bitLt quantization")
else:
# Skip moving to GPU since device_map="auto" already did that
print("- Model already on GPU due to device_map='auto'")
# Skip FP16 conversion since we specified compute_dtype
print(f"- Using {compute_dtype} for compute dtype")
# Check CUDA and SDPA
if torch.cuda.is_available() and torch.version.cuda and float(torch.version.cuda[:3]) >= 11.6:
if hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
print("- Using PyTorch SDPA (scaled_dot_product_attention)")
else:
print("- PyTorch SDPA not available")
# Try xformers if available (only on CUDA)
if torch.cuda.is_available():
try:
from xformers.ops import memory_efficient_attention
if hasattr(model, 'enable_xformers_memory_efficient_attention'):
model.enable_xformers_memory_efficient_attention()
print("- Enabled xformers memory efficient attention")
else:
print("- Model doesn't support xformers")
except (ImportError, AttributeError):
print("- Xformers not available")
# Set to eval mode
model.eval()
print("- Model set to eval mode")
# Int8 quantization using HuggingFace integration
elif self.config.use_int8:
print("- Using INT8 quantization")
# For now, just use standard loading with INT8 config
compute_dtype = torch.float16 if self.config.use_fp16 else torch.float32
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
)
model = AutoModel.from_pretrained(
self.config.model_path,
quantization_config=quantization_config,
torch_dtype=compute_dtype,
device_map="auto"
)
if model is None:
raise ValueError("Model loading returned None")
print(f"- Model type: {type(model)}")
model.eval()
print("- Model set to eval mode")
else:
# Standard loading for FP16/FP32
model = AutoModel.from_pretrained(self.config.model_path)
print("- Model loaded in standard precision")
print(f"- Model type: {type(model)}")
# Apply standard optimizations
# set default to half
import torch
torch.set_default_dtype(torch.bfloat16)
model = ModelOptimizer.optimize(model, self.config)
model = model.half()
# add torch compile
model = torch.compile(model)
# Final check to ensure model is not None
if model is None:
raise ValueError("Model is None after optimization")
print(f"- Final model type: {type(model)}")
return model
except Exception as e:
print(f"ERROR loading model: {str(e)}")
import traceback
traceback.print_exc()
raise
def _create_random_batch(self, batch_size: int) -> torch.Tensor:
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
return torch.randint(
0, 1000,
(batch_size, self.config.seq_length),
device=device,
dtype=torch.long
)
def _run_inference(
self,
input_ids: torch.Tensor,
graph_wrapper: Optional[GraphWrapper] = None
) -> Tuple[float, torch.Tensor]:
attention_mask = torch.ones_like(input_ids)
with torch.no_grad(), self.timer.timing():
if graph_wrapper is not None:
output = graph_wrapper(input_ids, attention_mask)
else:
output = self.model(input_ids=input_ids, attention_mask=attention_mask)
return self.timer.elapsed_time(), output
def run(self) -> Dict[int, Dict[str, float]]:
results = {}
# Reset peak memory stats
if torch.cuda.is_available():
torch.cuda.reset_peak_memory_stats()
elif torch.backends.mps.is_available():
# MPS doesn't have reset_peak_memory_stats, skip it
pass
else:
print("- No GPU memory stats available")
for batch_size in self.config.batch_sizes:
print(f"\nTesting batch size: {batch_size}")
times = []
# Get or create graph for this batch size
graph_wrapper = (
self.graphs.get_or_create(batch_size)
if self.graphs is not None
else None
)
# Pre-allocate input tensor
input_ids = self._create_random_batch(batch_size)
print(f"Input shape: {input_ids.shape}")
# Run benchmark
for i in tqdm(range(self.config.num_runs), desc=f"Batch size {batch_size}"):
try:
elapsed_time, output = self._run_inference(input_ids, graph_wrapper)
if i == 0: # Only print on first run
print(f"Output shape: {output.last_hidden_state.shape}")
times.append(elapsed_time)
except Exception as e:
print(f"Error during inference: {e}")
break
if not times:
print(f"No successful runs for batch size {batch_size}, skipping")
continue
# Calculate statistics
avg_time = np.mean(times)
std_time = np.std(times)
throughput = batch_size / avg_time
results[batch_size] = {
"avg_time": avg_time,
"std_time": std_time,
"throughput": throughput,
}
print(f"Avg Time: {avg_time:.4f}s ± {std_time:.4f}s")
print(f"Throughput: {throughput:.2f} sequences/second")
# Log memory usage
if torch.cuda.is_available():
peak_memory_gb = torch.cuda.max_memory_allocated() / (1024 ** 3)
elif torch.backends.mps.is_available():
# MPS doesn't have max_memory_allocated, use 0
peak_memory_gb = 0.0
else:
peak_memory_gb = 0.0
print("- No GPU memory usage available")
if peak_memory_gb > 0:
print(f"\nPeak GPU memory usage: {peak_memory_gb:.2f} GB")
else:
print("\n- GPU memory usage not available")
# Add memory info to results
for batch_size in results:
results[batch_size]["peak_memory_gb"] = peak_memory_gb
return results
def main():
parser = argparse.ArgumentParser(description="Model Inference Benchmark")
parser.add_argument(
"--model_path",
type=str,
default="facebook/contriever",
help="Path to the model",
)
parser.add_argument(
"--batch_sizes",
type=str,
default="1,2,4,8,16,32",
help="Comma-separated list of batch sizes",
)
parser.add_argument(
"--seq_length",
type=int,
default=256,
help="Sequence length for input",
)
parser.add_argument(
"--num_runs",
type=int,
default=5,
help="Number of runs for each batch size",
)
parser.add_argument(
"--use_fp16",
action="store_true",
help="Enable FP16 inference",
)
parser.add_argument(
"--use_int4",
action="store_true",
help="Enable INT4 quantization using bitsandbytes",
)
parser.add_argument(
"--use_int8",
action="store_true",
help="Enable INT8 quantization for both activations and weights using bitsandbytes",
)
parser.add_argument(
"--use_cuda_graphs",
action="store_true",
help="Enable CUDA Graphs optimization (only on NVIDIA GPUs)",
)
parser.add_argument(
"--use_flash_attention",
action="store_true",
help="Enable Flash Attention 2 if available (only on NVIDIA GPUs)",
)
parser.add_argument(
"--use_linear8bitlt",
action="store_true",
help="Enable Linear8bitLt quantization for all linear layers",
)
args = parser.parse_args()
# Print arguments for debugging
print("\nCommand line arguments:")
for arg, value in vars(args).items():
print(f"- {arg}: {value}")
config = BenchmarkConfig(
model_path=args.model_path,
batch_sizes=[int(bs) for bs in args.batch_sizes.split(",")],
seq_length=args.seq_length,
num_runs=args.num_runs,
use_fp16=args.use_fp16,
use_int4=args.use_int4,
use_int8=args.use_int8, # Add this line
use_cuda_graphs=args.use_cuda_graphs,
use_flash_attention=args.use_flash_attention,
use_linear8bitlt=args.use_linear8bitlt,
)
# Print configuration for debugging
print("\nBenchmark configuration:")
for field, value in vars(config).items():
print(f"- {field}: {value}")
try:
benchmark = Benchmark(config)
results = benchmark.run()
# Save results to file
import json
import os
# Create results directory if it doesn't exist
os.makedirs("results", exist_ok=True)
# Generate filename based on configuration
precision_type = "int4" if config.use_int4 else "int8" if config.use_int8 else "fp16" if config.use_fp16 else "fp32"
model_name = os.path.basename(config.model_path)
output_file = f"results/benchmark_{model_name}_{precision_type}.json"
# Save results
with open(output_file, "w") as f:
json.dump(
{
"config": {k: str(v) if isinstance(v, list) else v for k, v in vars(config).items()},
"results": {str(k): v for k, v in results.items()}
},
f,
indent=2
)
print(f"Results saved to {output_file}")
except Exception as e:
print(f"Benchmark failed: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
main()