384 lines
16 KiB
Python
384 lines
16 KiB
Python
import numpy as np
|
|
import os
|
|
import json
|
|
import struct
|
|
from pathlib import Path
|
|
from typing import Dict, Any, List
|
|
import contextlib
|
|
import threading
|
|
import time
|
|
import atexit
|
|
import socket
|
|
import subprocess
|
|
import sys
|
|
import pickle
|
|
|
|
from leann.embedding_server_manager import EmbeddingServerManager
|
|
from .convert_to_csr import convert_hnsw_graph_to_csr
|
|
|
|
from leann.registry import register_backend
|
|
from leann.interface import (
|
|
LeannBackendFactoryInterface,
|
|
LeannBackendBuilderInterface,
|
|
LeannBackendSearcherInterface
|
|
)
|
|
|
|
def get_metric_map():
|
|
from . import faiss
|
|
return {
|
|
"mips": faiss.METRIC_INNER_PRODUCT,
|
|
"l2": faiss.METRIC_L2,
|
|
"cosine": faiss.METRIC_INNER_PRODUCT,
|
|
}
|
|
|
|
@register_backend("hnsw")
|
|
class HNSWBackend(LeannBackendFactoryInterface):
|
|
@staticmethod
|
|
def builder(**kwargs) -> LeannBackendBuilderInterface:
|
|
return HNSWBuilder(**kwargs)
|
|
|
|
@staticmethod
|
|
def searcher(index_path: str, **kwargs) -> LeannBackendSearcherInterface:
|
|
path = Path(index_path)
|
|
meta_path = path.parent / f"{path.name}.meta.json"
|
|
if not meta_path.exists():
|
|
raise FileNotFoundError(f"Leann metadata file not found at {meta_path}.")
|
|
|
|
with open(meta_path, 'r') as f:
|
|
meta = json.load(f)
|
|
|
|
kwargs['meta'] = meta
|
|
return HNSWSearcher(index_path, **kwargs)
|
|
|
|
class HNSWBuilder(LeannBackendBuilderInterface):
|
|
def __init__(self, **kwargs):
|
|
self.build_params = kwargs.copy()
|
|
|
|
# --- Configuration defaults with standardized names ---
|
|
self.is_compact = self.build_params.setdefault("is_compact", True)
|
|
self.is_recompute = self.build_params.setdefault("is_recompute", True)
|
|
|
|
# --- Additional Options ---
|
|
self.is_skip_neighbors = self.build_params.setdefault("is_skip_neighbors", False)
|
|
self.disk_cache_ratio = self.build_params.setdefault("disk_cache_ratio", 0.0)
|
|
self.external_storage_path = self.build_params.get("external_storage_path", None)
|
|
|
|
# --- Standard HNSW parameters ---
|
|
self.M = self.build_params.setdefault("M", 32)
|
|
self.efConstruction = self.build_params.setdefault("efConstruction", 200)
|
|
self.distance_metric = self.build_params.setdefault("distance_metric", "mips")
|
|
self.dimensions = self.build_params.get("dimensions")
|
|
|
|
if self.is_skip_neighbors and not self.is_compact:
|
|
raise ValueError("is_skip_neighbors can only be used with is_compact=True")
|
|
|
|
if self.is_recompute and not self.is_compact:
|
|
raise ValueError("is_recompute requires is_compact=True for efficiency")
|
|
|
|
def build(self, data: np.ndarray, ids: List[str], index_path: str, **kwargs):
|
|
"""Build HNSW index using FAISS"""
|
|
from . import faiss
|
|
|
|
path = Path(index_path)
|
|
index_dir = path.parent
|
|
index_prefix = path.stem
|
|
|
|
index_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
if data.dtype != np.float32:
|
|
data = data.astype(np.float32)
|
|
if not data.flags['C_CONTIGUOUS']:
|
|
data = np.ascontiguousarray(data)
|
|
|
|
# Create label map: integer -> string_id
|
|
label_map = {i: str_id for i, str_id in enumerate(ids)}
|
|
label_map_file = index_dir / "leann.labels.map"
|
|
with open(label_map_file, 'wb') as f:
|
|
pickle.dump(label_map, f)
|
|
|
|
metric_str = self.distance_metric.lower()
|
|
metric_enum = get_metric_map().get(metric_str)
|
|
if metric_enum is None:
|
|
raise ValueError(f"Unsupported distance_metric '{metric_str}'.")
|
|
|
|
M = self.M
|
|
efConstruction = self.efConstruction
|
|
dim = self.dimensions
|
|
if not dim:
|
|
dim = data.shape[1]
|
|
|
|
print(f"INFO: Building HNSW index for {data.shape[0]} vectors with metric {metric_enum}...")
|
|
|
|
try:
|
|
index = faiss.IndexHNSWFlat(dim, M, metric_enum)
|
|
index.hnsw.efConstruction = efConstruction
|
|
|
|
if metric_str == "cosine":
|
|
faiss.normalize_L2(data)
|
|
|
|
index.add(data.shape[0], faiss.swig_ptr(data))
|
|
|
|
index_file = index_dir / f"{index_prefix}.index"
|
|
faiss.write_index(index, str(index_file))
|
|
|
|
print(f"✅ HNSW index built successfully at '{index_file}'")
|
|
|
|
if self.is_compact:
|
|
self._convert_to_csr(index_file)
|
|
|
|
except Exception as e:
|
|
print(f"💥 ERROR: HNSW index build failed. Exception: {e}")
|
|
raise
|
|
|
|
def _convert_to_csr(self, index_file: Path):
|
|
"""Convert built index to CSR format"""
|
|
try:
|
|
mode_str = "CSR-pruned" if self.is_recompute else "CSR-standard"
|
|
print(f"INFO: Converting HNSW index to {mode_str} format...")
|
|
|
|
csr_temp_file = index_file.with_suffix(".csr.tmp")
|
|
|
|
success = convert_hnsw_graph_to_csr(
|
|
str(index_file),
|
|
str(csr_temp_file),
|
|
prune_embeddings=self.is_recompute
|
|
)
|
|
|
|
if success:
|
|
print("✅ CSR conversion successful.")
|
|
import shutil
|
|
shutil.move(str(csr_temp_file), str(index_file))
|
|
print(f"INFO: Replaced original index with {mode_str} version at '{index_file}'")
|
|
else:
|
|
# Clean up and fail fast
|
|
if csr_temp_file.exists():
|
|
os.remove(csr_temp_file)
|
|
raise RuntimeError("CSR conversion failed - cannot proceed with compact format")
|
|
|
|
except Exception as e:
|
|
print(f"💥 ERROR: CSR conversion failed. Exception: {e}")
|
|
raise
|
|
|
|
|
|
class HNSWSearcher(LeannBackendSearcherInterface):
|
|
def _get_index_storage_status(self, index_file: Path) -> tuple[bool, bool]:
|
|
"""
|
|
Robustly determines the index's storage status by parsing the file.
|
|
|
|
Returns:
|
|
A tuple (is_compact, is_pruned).
|
|
"""
|
|
if not index_file.exists():
|
|
return False, False
|
|
|
|
with open(index_file, 'rb') as f:
|
|
try:
|
|
def read_struct(fmt):
|
|
size = struct.calcsize(fmt)
|
|
data = f.read(size)
|
|
if len(data) != size:
|
|
raise EOFError(f"File ended unexpectedly reading struct fmt '{fmt}'.")
|
|
return struct.unpack(fmt, data)[0]
|
|
|
|
def skip_vector(element_size):
|
|
count = read_struct('<Q')
|
|
f.seek(count * element_size, 1)
|
|
|
|
# 1. Read up to the compact flag
|
|
read_struct('<I'); read_struct('<i'); read_struct('<q');
|
|
read_struct('<q'); read_struct('<q'); read_struct('<?')
|
|
metric_type = read_struct('<i')
|
|
if metric_type > 1: read_struct('<f')
|
|
skip_vector(8); skip_vector(4); skip_vector(4)
|
|
|
|
# 2. Check if there's a compact flag byte
|
|
# Try to read the compact flag, but handle both old and new formats
|
|
pos_before_compact = f.tell()
|
|
try:
|
|
is_compact = read_struct('<?')
|
|
print(f"INFO: Detected is_compact flag as: {is_compact}")
|
|
except (EOFError, struct.error):
|
|
# Old format without compact flag - assume non-compact
|
|
f.seek(pos_before_compact)
|
|
is_compact = False
|
|
print(f"INFO: No compact flag found, assuming is_compact=False")
|
|
|
|
# 3. Read storage FourCC to determine if pruned
|
|
is_pruned = False
|
|
try:
|
|
if is_compact:
|
|
# For compact, we need to skip pointers and scalars to get to the storage FourCC
|
|
skip_vector(8) # level_ptr
|
|
skip_vector(8) # node_offsets
|
|
read_struct('<i'); read_struct('<i'); read_struct('<i');
|
|
read_struct('<i'); read_struct('<i')
|
|
storage_fourcc = read_struct('<I')
|
|
else:
|
|
# For non-compact, we need to read the flag probe, then skip offsets and neighbors
|
|
pos_before_probe = f.tell()
|
|
flag_byte = f.read(1)
|
|
if not (flag_byte and flag_byte == b'\x00'):
|
|
f.seek(pos_before_probe)
|
|
skip_vector(8); skip_vector(4) # offsets, neighbors
|
|
read_struct('<i'); read_struct('<i'); read_struct('<i');
|
|
read_struct('<i'); read_struct('<i')
|
|
# Now we are at the storage. The entire rest is storage blob.
|
|
storage_fourcc = struct.unpack('<I', f.read(4))[0]
|
|
|
|
NULL_INDEX_FOURCC = int.from_bytes(b'null', 'little')
|
|
if storage_fourcc == NULL_INDEX_FOURCC:
|
|
is_pruned = True
|
|
except (EOFError, struct.error):
|
|
# Cannot determine pruning status, assume not pruned
|
|
pass
|
|
|
|
print(f"INFO: Detected is_pruned as: {is_pruned}")
|
|
return is_compact, is_pruned
|
|
|
|
except (EOFError, struct.error) as e:
|
|
print(f"WARNING: Could not parse index file to detect format: {e}. Assuming standard, not pruned.")
|
|
return False, False
|
|
|
|
def __init__(self, index_path: str, **kwargs):
|
|
from . import faiss
|
|
self.meta = kwargs.get("meta", {})
|
|
if not self.meta:
|
|
raise ValueError("HNSWSearcher requires metadata from .meta.json.")
|
|
|
|
self.dimensions = self.meta.get("dimensions")
|
|
if not self.dimensions:
|
|
raise ValueError("Dimensions not found in Leann metadata.")
|
|
|
|
self.distance_metric = self.meta.get("distance_metric", "mips").lower()
|
|
metric_enum = get_metric_map().get(self.distance_metric)
|
|
if metric_enum is None:
|
|
raise ValueError(f"Unsupported distance_metric '{self.distance_metric}'.")
|
|
|
|
self.embedding_model = self.meta.get("embedding_model")
|
|
if not self.embedding_model:
|
|
print("WARNING: embedding_model not found in meta.json. Recompute will fail if attempted.")
|
|
|
|
path = Path(index_path)
|
|
self.index_dir = path.parent
|
|
self.index_prefix = path.stem
|
|
|
|
# Load the label map
|
|
label_map_file = self.index_dir / "leann.labels.map"
|
|
if not label_map_file.exists():
|
|
raise FileNotFoundError(f"Label map file not found: {label_map_file}")
|
|
|
|
with open(label_map_file, 'rb') as f:
|
|
self.label_map = pickle.load(f)
|
|
|
|
index_file = self.index_dir / f"{self.index_prefix}.index"
|
|
if not index_file.exists():
|
|
raise FileNotFoundError(f"HNSW index file not found at {index_file}")
|
|
|
|
self.is_compact, self.is_pruned = self._get_index_storage_status(index_file)
|
|
|
|
# Validate configuration constraints
|
|
if not self.is_compact and kwargs.get("is_skip_neighbors", False):
|
|
raise ValueError("is_skip_neighbors can only be used with is_compact=True")
|
|
|
|
if kwargs.get("is_recompute", False) and kwargs.get("external_storage_path"):
|
|
raise ValueError("Cannot use both is_recompute and external_storage_path simultaneously")
|
|
|
|
hnsw_config = faiss.HNSWIndexConfig()
|
|
hnsw_config.is_compact = self.is_compact
|
|
|
|
# Apply additional configuration options with strict validation
|
|
hnsw_config.is_skip_neighbors = kwargs.get("is_skip_neighbors", False)
|
|
hnsw_config.is_recompute = self.is_pruned or kwargs.get("is_recompute", False)
|
|
hnsw_config.disk_cache_ratio = kwargs.get("disk_cache_ratio", 0.0)
|
|
hnsw_config.external_storage_path = kwargs.get("external_storage_path")
|
|
|
|
self.zmq_port = kwargs.get("zmq_port", 5557)
|
|
|
|
if self.is_pruned and not hnsw_config.is_recompute:
|
|
raise RuntimeError("Index is pruned (embeddings removed) but recompute is disabled. This is impossible - recompute must be enabled for pruned indices.")
|
|
|
|
print(f"INFO: Loading index with is_compact={self.is_compact}, is_pruned={self.is_pruned}")
|
|
print(f"INFO: Config - skip_neighbors={hnsw_config.is_skip_neighbors}, recompute={hnsw_config.is_recompute}")
|
|
|
|
self._index = faiss.read_index(str(index_file), faiss.IO_FLAG_MMAP, hnsw_config)
|
|
|
|
if self.is_compact:
|
|
print("✅ Compact CSR format HNSW index loaded successfully.")
|
|
else:
|
|
print("✅ Standard HNSW index loaded successfully.")
|
|
|
|
self.embedding_server_manager = EmbeddingServerManager(
|
|
backend_module_name="leann_backend_hnsw.hnsw_embedding_server"
|
|
)
|
|
|
|
def search(self, query: np.ndarray, top_k: int, **kwargs) -> Dict[str, Any]:
|
|
"""Search using HNSW index with optional recompute functionality"""
|
|
from . import faiss
|
|
|
|
ef = kwargs.get("ef", 200)
|
|
|
|
if self.is_pruned:
|
|
print(f"INFO: Index is pruned - ensuring embedding server is running for recompute.")
|
|
if not self.embedding_model:
|
|
raise ValueError("Cannot use recompute mode without 'embedding_model' in meta.json.")
|
|
|
|
passages_file = kwargs.get("passages_file")
|
|
if not passages_file:
|
|
# Get the passages file path from meta.json
|
|
if 'passage_sources' in self.meta and self.meta['passage_sources']:
|
|
passage_source = self.meta['passage_sources'][0]
|
|
passages_file = passage_source['path']
|
|
print(f"INFO: Found passages file from metadata: {passages_file}")
|
|
else:
|
|
raise RuntimeError(f"FATAL: Index is pruned but no passage_sources found in metadata.")
|
|
|
|
zmq_port = kwargs.get("zmq_port", 5557)
|
|
server_started = self.embedding_server_manager.start_server(
|
|
port=zmq_port,
|
|
model_name=self.embedding_model,
|
|
passages_file=passages_file,
|
|
distance_metric=self.distance_metric
|
|
)
|
|
if not server_started:
|
|
raise RuntimeError(f"Failed to start HNSW embedding server on port {zmq_port}")
|
|
|
|
if query.dtype != np.float32:
|
|
query = query.astype(np.float32)
|
|
if query.ndim == 1:
|
|
query = np.expand_dims(query, axis=0)
|
|
|
|
if self.distance_metric == "cosine":
|
|
faiss.normalize_L2(query)
|
|
|
|
try:
|
|
params = faiss.SearchParametersHNSW()
|
|
params.efSearch = ef
|
|
params.zmq_port = kwargs.get("zmq_port", self.zmq_port)
|
|
|
|
batch_size = query.shape[0]
|
|
distances = np.empty((batch_size, top_k), dtype=np.float32)
|
|
labels = np.empty((batch_size, top_k), dtype=np.int64)
|
|
|
|
self._index.search(query.shape[0], faiss.swig_ptr(query), top_k, faiss.swig_ptr(distances), faiss.swig_ptr(labels), params)
|
|
|
|
# Convert integer labels to string IDs
|
|
string_labels = []
|
|
for batch_labels in labels:
|
|
batch_string_labels = []
|
|
for int_label in batch_labels:
|
|
if int_label in self.label_map:
|
|
batch_string_labels.append(self.label_map[int_label])
|
|
else:
|
|
batch_string_labels.append(f"unknown_{int_label}")
|
|
string_labels.append(batch_string_labels)
|
|
|
|
return {"labels": string_labels, "distances": distances}
|
|
|
|
except Exception as e:
|
|
print(f"💥 ERROR: HNSW search failed. Exception: {e}")
|
|
raise
|
|
|
|
def __del__(self):
|
|
if hasattr(self, 'embedding_server_manager'):
|
|
self.embedding_server_manager.stop_server()
|