* Add custom folder support and improve image loading for multi-vector retrieval - Enhanced _load_images_from_dir with recursive search support and better error handling - Added support for WebP format and RGB conversion for all image modes - Added custom folder CLI arguments (--custom-folder, --recursive, --rebuild-index) - Improved documentation and removed completed TODO comment 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com> * Format code style in leann_multi_vector.py for better readability 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com> * docs: polish README performance tip section - Fix typo: 'matrilize' -> 'materialize' - Improve clarity and formatting of --no-recompute flag explanation - Add code block for better readability * format --------- Co-authored-by: Claude Sonnet 4.5 <noreply@anthropic.com>
Vision-based PDF Multi-Vector Demos (macOS/MPS)
This folder contains two demos to index PDF pages as images and run multi-vector retrieval with ColPali/ColQwen2, plus optional similarity map visualization and answer generation.
What you’ll run
multi-vector-leann-paper-example.py: local PDF → pages → embed → build HNSW index → search.multi-vector-leann-similarity-map.py: HF dataset (default) or local pages → embed → index → retrieve → similarity maps → optional Qwen-VL answer.
Prerequisites (macOS)
1) Homebrew poppler (for pdf2image)
brew install poppler
which pdfinfo && pdfinfo -v
2) Python environment
Use uv (recommended) or pip. Python 3.9+.
Using uv:
uv pip install \
colpali_engine \
pdf2image \
pillow \
matplotlib qwen_vl_utils \
einops \
seaborn
Notes:
- On first run, models download from Hugging Face. Login/config if needed.
- The scripts auto-select device: CUDA > MPS > CPU. Verify MPS:
python -c "import torch; print('MPS available:', bool(getattr(torch.backends, 'mps', None) and torch.backends.mps.is_available()))"
Run the demos
A) Local PDF example
Converts a local PDF into page images, embeds them, builds an index, and searches.
cd apps/multimodal/vision-based-pdf-multi-vector
# If you don't have the sample PDF locally, download it (ignored by Git)
mkdir -p pdfs
curl -L -o pdfs/2004.12832v2.pdf https://arxiv.org/pdf/2004.12832.pdf
ls pdfs/2004.12832v2.pdf
# Ensure output dir exists
mkdir -p pages
python multi-vector-leann-paper-example.py
Expected:
- Page images in
pages/. - Console prints like
Using device=mps, dtype=...and retrieved file paths for queries.
To use your own PDF: edit pdf_path near the top of the script.
B) Similarity map + answer demo
Uses HF dataset weaviate/arXiv-AI-papers-multi-vector by default; can switch to local pages.
cd apps/multimodal/vision-based-pdf-multi-vector
python multi-vector-leann-similarity-map.py
Artifacts (when enabled):
- Retrieved pages:
./figures/retrieved_page_rank{K}.png - Similarity maps:
./figures/similarity_map_rank{K}.png
Key knobs in the script (top of file):
QUERY: your questionMODEL:"colqwen2"or"colpali"USE_HF_DATASET: setFalseto use local pagesPDF,PAGES_DIR: for local modeINDEX_PATH,TOPK,FIRST_STAGE_K,REBUILD_INDEXSIMILARITY_MAP,SIM_TOKEN_IDX,SIM_OUTPUTANSWER,MAX_NEW_TOKENS(Qwen-VL)
Troubleshooting
- pdf2image errors on macOS: ensure
brew install popplerandpdfinfoworks in terminal. - Slow or OOM on MPS: reduce dataset size (e.g., set
MAX_DOCS) or switch to CPU. - NaNs on MPS: keep fp32 on MPS (default in similarity-map script); avoid fp16 there.
- First-run model downloads can be large; ensure network access (HF mirrors if needed).
Notes
- Index files are under
./indexes/. Delete or setREBUILD_INDEX=Trueto rebuild. - For local PDFs, page images go to
./pages/.
Retrieval and Visualization Example
Example settings in multi-vector-leann-similarity-map.py:
QUERY = "How does DeepSeek-V2 compare against the LLaMA family of LLMs?"SIMILARITY_MAP = True(to generate heatmaps)TOPK = 1(save the top retrieved page and its similarity map)
Run:
cd apps/multimodal/vision-based-pdf-multi-vector
python multi-vector-leann-similarity-map.py
Outputs (by default):
- Retrieved page:
./figures/retrieved_page_rank1.png - Similarity map:
./figures/similarity_map_rank1.png
Sample visualization (example result, and the query is "QUERY = "How does Vim model performance and efficiency compared to other models?"
"):

Notes:
- Set
SIM_TOKEN_IDXto visualize a specific token index; set-1to auto-select the most salient token. - If you change
SIM_OUTPUTto a file path (e.g.,./figures/my_map.png), multiple ranks are saved asmy_map_rank{K}.png.