313 lines
12 KiB
Python
313 lines
12 KiB
Python
import numpy as np
|
|
import os
|
|
import json
|
|
import struct
|
|
from pathlib import Path
|
|
from typing import Dict
|
|
import contextlib
|
|
import threading
|
|
import time
|
|
import atexit
|
|
import socket
|
|
import subprocess
|
|
import sys
|
|
|
|
# 文件: packages/leann-backend-hnsw/leann_backend_hnsw/hnsw_backend.py
|
|
|
|
# ... (其他 import 保持不变) ...
|
|
|
|
from leann.registry import register_backend
|
|
from leann.interface import (
|
|
LeannBackendFactoryInterface,
|
|
LeannBackendBuilderInterface,
|
|
LeannBackendSearcherInterface
|
|
)
|
|
|
|
def get_metric_map():
|
|
from . import faiss
|
|
return {
|
|
"mips": faiss.METRIC_INNER_PRODUCT,
|
|
"l2": faiss.METRIC_L2,
|
|
"cosine": faiss.METRIC_INNER_PRODUCT, # Will need normalization
|
|
}
|
|
|
|
def _check_port(port: int) -> bool:
|
|
"""Check if a port is in use"""
|
|
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
|
return s.connect_ex(('localhost', port)) == 0
|
|
|
|
class HNSWEmbeddingServerManager:
|
|
"""
|
|
HNSW-specific embedding server manager that handles the lifecycle of the embedding server process.
|
|
Mirrors the DiskANN EmbeddingServerManager architecture.
|
|
"""
|
|
def __init__(self):
|
|
self.server_process = None
|
|
self.server_port = None
|
|
atexit.register(self.stop_server)
|
|
|
|
def start_server(self, port=5556, model_name="sentence-transformers/all-mpnet-base-v2", passages_file=None):
|
|
"""
|
|
Start the HNSW embedding server process.
|
|
|
|
Args:
|
|
port: ZMQ port for the server
|
|
model_name: Name of the embedding model to use
|
|
passages_file: Optional path to passages JSON file
|
|
"""
|
|
if self.server_process and self.server_process.poll() is None:
|
|
print(f"INFO: Reusing existing HNSW server process for this session (PID {self.server_process.pid})")
|
|
return True
|
|
|
|
# Check if port is already in use
|
|
if _check_port(port):
|
|
print(f"WARNING: Port {port} is already in use. Assuming an external HNSW server is running and connecting to it.")
|
|
return True
|
|
|
|
print(f"INFO: Starting session-level HNSW embedding server as a background process...")
|
|
|
|
try:
|
|
command = [
|
|
sys.executable,
|
|
"-m", "packages.leann-backend-hnsw.src.leann_backend_hnsw.hnsw_embedding_server",
|
|
"--zmq-port", str(port),
|
|
"--model-name", model_name
|
|
]
|
|
|
|
# Add passages file if provided
|
|
if passages_file:
|
|
command.extend(["--passages-file", str(passages_file)])
|
|
|
|
project_root = Path(__file__).parent.parent.parent.parent
|
|
print(f"INFO: Running HNSW command from project root: {project_root}")
|
|
|
|
self.server_process = subprocess.Popen(
|
|
command,
|
|
cwd=project_root,
|
|
stdout=subprocess.PIPE,
|
|
stderr=subprocess.PIPE,
|
|
text=True,
|
|
encoding='utf-8'
|
|
)
|
|
self.server_port = port
|
|
print(f"INFO: HNSW server process started with PID: {self.server_process.pid}")
|
|
|
|
max_wait, wait_interval = 30, 0.5
|
|
for _ in range(int(max_wait / wait_interval)):
|
|
if _check_port(port):
|
|
print(f"✅ HNSW embedding server is up and ready for this session.")
|
|
log_thread = threading.Thread(target=self._log_monitor, daemon=True)
|
|
log_thread.start()
|
|
return True
|
|
if self.server_process.poll() is not None:
|
|
print("❌ ERROR: HNSW server process terminated unexpectedly during startup.")
|
|
self._log_monitor()
|
|
return False
|
|
time.sleep(wait_interval)
|
|
|
|
print(f"❌ ERROR: HNSW server process failed to start listening within {max_wait} seconds.")
|
|
self.stop_server()
|
|
return False
|
|
|
|
except Exception as e:
|
|
print(f"❌ ERROR: Failed to start HNSW embedding server process: {e}")
|
|
return False
|
|
|
|
def _log_monitor(self):
|
|
"""Monitor server logs"""
|
|
if not self.server_process:
|
|
return
|
|
try:
|
|
if self.server_process.stdout:
|
|
for line in iter(self.server_process.stdout.readline, ''):
|
|
print(f"[HNSWEmbeddingServer LOG]: {line.strip()}")
|
|
self.server_process.stdout.close()
|
|
if self.server_process.stderr:
|
|
for line in iter(self.server_process.stderr.readline, ''):
|
|
print(f"[HNSWEmbeddingServer ERROR]: {line.strip()}")
|
|
self.server_process.stderr.close()
|
|
except Exception as e:
|
|
print(f"HNSW Log monitor error: {e}")
|
|
|
|
def stop_server(self):
|
|
"""Stop the HNSW embedding server process"""
|
|
if self.server_process and self.server_process.poll() is None:
|
|
print(f"INFO: Terminating HNSW session server process (PID: {self.server_process.pid})...")
|
|
self.server_process.terminate()
|
|
try:
|
|
self.server_process.wait(timeout=5)
|
|
print("INFO: HNSW server process terminated.")
|
|
except subprocess.TimeoutExpired:
|
|
print("WARNING: HNSW server process did not terminate gracefully, killing it.")
|
|
self.server_process.kill()
|
|
self.server_process = None
|
|
|
|
@register_backend("hnsw")
|
|
class HNSWBackend(LeannBackendFactoryInterface):
|
|
@staticmethod
|
|
def builder(**kwargs) -> LeannBackendBuilderInterface:
|
|
return HNSWBuilder(**kwargs)
|
|
|
|
@staticmethod
|
|
def searcher(index_path: str, **kwargs) -> LeannBackendSearcherInterface:
|
|
path = Path(index_path)
|
|
meta_path = path.parent / f"{path.stem}.hnsw.meta.json"
|
|
if not meta_path.exists():
|
|
raise FileNotFoundError(f"Leann metadata file not found at {meta_path}. Cannot infer vector dimension for searcher.")
|
|
|
|
with open(meta_path, 'r') as f:
|
|
meta = json.load(f)
|
|
|
|
try:
|
|
from sentence_transformers import SentenceTransformer
|
|
model = SentenceTransformer(meta.get("embedding_model"))
|
|
dimensions = model.get_sentence_embedding_dimension()
|
|
kwargs['dimensions'] = dimensions
|
|
except ImportError:
|
|
raise ImportError("sentence-transformers is required to infer embedding dimensions. Please install it.")
|
|
except Exception as e:
|
|
raise RuntimeError(f"Could not load SentenceTransformer model to get dimension: {e}")
|
|
|
|
return HNSWSearcher(index_path, **kwargs)
|
|
|
|
class HNSWBuilder(LeannBackendBuilderInterface):
|
|
def __init__(self, **kwargs):
|
|
self.build_params = kwargs
|
|
|
|
def build(self, data: np.ndarray, index_path: str, **kwargs):
|
|
"""Build HNSW index using FAISS"""
|
|
from . import faiss
|
|
|
|
path = Path(index_path)
|
|
index_dir = path.parent
|
|
index_prefix = path.stem
|
|
|
|
index_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
if data.dtype != np.float32:
|
|
data = data.astype(np.float32)
|
|
if not data.flags['C_CONTIGUOUS']:
|
|
data = np.ascontiguousarray(data)
|
|
|
|
build_kwargs = {**self.build_params, **kwargs}
|
|
metric_str = build_kwargs.get("distance_metric", "mips").lower()
|
|
metric_enum = get_metric_map().get(metric_str)
|
|
if metric_enum is None:
|
|
raise ValueError(f"Unsupported distance_metric '{metric_str}'.")
|
|
|
|
# HNSW parameters
|
|
M = build_kwargs.get("M", 32) # Max connections per layer
|
|
efConstruction = build_kwargs.get("efConstruction", 200) # Size of the dynamic candidate list for construction
|
|
dim = data.shape[1]
|
|
|
|
print(f"INFO: Building HNSW index for {data.shape[0]} vectors with metric {metric_enum}...")
|
|
|
|
try:
|
|
# Create HNSW index
|
|
if metric_enum == faiss.METRIC_INNER_PRODUCT:
|
|
index = faiss.IndexHNSWFlat(dim, M, metric_enum)
|
|
else: # L2
|
|
index = faiss.IndexHNSWFlat(dim, M, metric_enum)
|
|
|
|
# Set construction parameters
|
|
index.hnsw.efConstruction = efConstruction
|
|
|
|
# Normalize vectors if using cosine similarity
|
|
if metric_str == "cosine":
|
|
faiss.normalize_L2(data)
|
|
|
|
# Add vectors to index
|
|
index.add(data.shape[0], faiss.swig_ptr(data))
|
|
|
|
# Save index
|
|
index_file = index_dir / f"{index_prefix}.index"
|
|
faiss.write_index(index, str(index_file))
|
|
|
|
print(f"✅ HNSW index built successfully at '{index_file}'")
|
|
|
|
except Exception as e:
|
|
print(f"💥 ERROR: HNSW index build failed. Exception: {e}")
|
|
raise
|
|
|
|
class HNSWSearcher(LeannBackendSearcherInterface):
|
|
def __init__(self, index_path: str, **kwargs):
|
|
from . import faiss
|
|
path = Path(index_path)
|
|
index_dir = path.parent
|
|
index_prefix = path.stem
|
|
|
|
metric_str = kwargs.get("distance_metric", "mips").lower()
|
|
metric_enum = get_metric_map().get(metric_str)
|
|
if metric_enum is None:
|
|
raise ValueError(f"Unsupported distance_metric '{metric_str}'.")
|
|
|
|
dimensions = kwargs.get("dimensions")
|
|
if not dimensions:
|
|
raise ValueError("Vector dimension not provided to HNSWSearcher.")
|
|
|
|
try:
|
|
# Load FAISS HNSW index
|
|
index_file = index_dir / f"{index_prefix}.index"
|
|
if not index_file.exists():
|
|
raise FileNotFoundError(f"HNSW index file not found at {index_file}")
|
|
|
|
self._index = faiss.read_index(str(index_file))
|
|
self.metric_str = metric_str
|
|
self.embedding_server_manager = HNSWEmbeddingServerManager()
|
|
print("✅ HNSW index loaded successfully.")
|
|
|
|
except Exception as e:
|
|
print(f"💥 ERROR: Failed to load HNSW index. Exception: {e}")
|
|
raise
|
|
|
|
def search(self, query: np.ndarray, top_k: int, **kwargs) -> Dict[str, any]:
|
|
"""Search using HNSW index with optional recompute functionality"""
|
|
ef = kwargs.get("ef", 200) # Size of the dynamic candidate list for search
|
|
|
|
# Recompute parameters
|
|
recompute_neighbor_embeddings = kwargs.get("recompute_neighbor_embeddings", False)
|
|
zmq_port = kwargs.get("zmq_port", 5556)
|
|
embedding_model = kwargs.get("embedding_model", "sentence-transformers/all-mpnet-base-v2")
|
|
passages_file = kwargs.get("passages_file", None)
|
|
|
|
if recompute_neighbor_embeddings:
|
|
print(f"INFO: HNSW ZMQ mode enabled - ensuring embedding server is running")
|
|
|
|
if not self.embedding_server_manager.start_server(zmq_port, embedding_model, passages_file):
|
|
print(f"WARNING: Failed to start HNSW embedding server, falling back to standard search")
|
|
kwargs['recompute_neighbor_embeddings'] = False
|
|
|
|
if query.dtype != np.float32:
|
|
query = query.astype(np.float32)
|
|
if query.ndim == 1:
|
|
query = np.expand_dims(query, axis=0)
|
|
|
|
# Normalize query if using cosine similarity
|
|
if self.metric_str == "cosine":
|
|
faiss.normalize_L2(query)
|
|
|
|
try:
|
|
# Set search parameter
|
|
self._index.hnsw.efSearch = ef
|
|
|
|
if recompute_neighbor_embeddings:
|
|
# Use custom search with recompute
|
|
# This would require implementing custom HNSW search logic
|
|
# For now, we'll fall back to standard search
|
|
print("WARNING: Recompute functionality for HNSW not yet implemented, using standard search")
|
|
distances, labels = self._index.search(query, top_k)
|
|
else:
|
|
# Standard FAISS search
|
|
distances, labels = self._index.search(query, top_k)
|
|
|
|
return {"labels": labels, "distances": distances}
|
|
|
|
except Exception as e:
|
|
print(f"💥 ERROR: HNSW search failed. Exception: {e}")
|
|
batch_size = query.shape[0]
|
|
return {"labels": np.full((batch_size, top_k), -1, dtype=np.int64),
|
|
"distances": np.full((batch_size, top_k), float('inf'), dtype=np.float32)}
|
|
|
|
def __del__(self):
|
|
if hasattr(self, 'embedding_server_manager'):
|
|
self.embedding_server_manager.stop_server() |