180 lines
7.6 KiB
Python
180 lines
7.6 KiB
Python
from .registry import BACKEND_REGISTRY
|
|
from .interface import LeannBackendFactoryInterface
|
|
from typing import List, Dict, Any, Optional
|
|
import numpy as np
|
|
import os
|
|
import json
|
|
from pathlib import Path
|
|
import openai # Import openai library
|
|
|
|
# 一个辅助函数,用于临时计算 embedding
|
|
def _compute_embeddings(chunks: List[str], model_name: str) -> np.ndarray:
|
|
try:
|
|
from sentence_transformers import SentenceTransformer
|
|
model = SentenceTransformer(model_name)
|
|
print(f"INFO: Computing embeddings for {len(chunks)} chunks using '{model_name}'...")
|
|
embeddings = model.encode(chunks, show_progress_bar=True)
|
|
return np.asarray(embeddings, dtype=np.float32)
|
|
except ImportError:
|
|
print("WARNING: sentence-transformers not installed. Falling back to random embeddings.")
|
|
# 如果没有安装,则生成随机向量用于测试
|
|
# TODO: 应该从一个固定的地方获取维度信息
|
|
return np.random.rand(len(chunks), 768).astype(np.float32)
|
|
|
|
|
|
class LeannBuilder:
|
|
"""
|
|
负责构建 Leann 索引的上层 API。
|
|
它协调 embedding 计算和后端索引构建。
|
|
"""
|
|
def __init__(self, backend_name: str, embedding_model: str = "sentence-transformers/all-mpnet-base-v2", **backend_kwargs):
|
|
self.backend_name = backend_name
|
|
self.backend_factory = BACKEND_REGISTRY.get(backend_name)
|
|
if self.backend_factory is None:
|
|
raise ValueError(f"Backend '{backend_name}' not found or not registered.")
|
|
|
|
self.embedding_model = embedding_model
|
|
self.backend_kwargs = backend_kwargs
|
|
self.chunks: List[Dict[str, Any]] = []
|
|
print(f"INFO: LeannBuilder initialized with '{backend_name}' backend.")
|
|
|
|
def add_text(self, text: str, metadata: Optional[Dict[str, Any]] = None):
|
|
# 简单的分块逻辑
|
|
self.chunks.append({"text": text, "metadata": metadata or {}})
|
|
|
|
def build_index(self, index_path: str):
|
|
if not self.chunks:
|
|
raise ValueError("No chunks added. Use add_text() first.")
|
|
|
|
# 1. 计算 embedding (这是 leann-core 的职责)
|
|
texts_to_embed = [c["text"] for c in self.chunks]
|
|
embeddings = _compute_embeddings(texts_to_embed, self.embedding_model)
|
|
|
|
# 2. 创建 builder 实例并构建索引
|
|
builder_instance = self.backend_factory.builder(**self.backend_kwargs)
|
|
builder_instance.build(embeddings, index_path, **self.backend_kwargs)
|
|
|
|
# 3. 保存 leann 特有的元数据(不包含向量)
|
|
index_dir = Path(index_path).parent
|
|
leann_meta_path = index_dir / f"{Path(index_path).name}.meta.json"
|
|
|
|
meta_data = {
|
|
"version": "0.1.0",
|
|
"backend_name": self.backend_name,
|
|
"embedding_model": self.embedding_model,
|
|
"num_chunks": len(self.chunks),
|
|
"chunks": self.chunks,
|
|
}
|
|
with open(leann_meta_path, 'w', encoding='utf-8') as f:
|
|
json.dump(meta_data, f, indent=2)
|
|
print(f"INFO: Leann metadata saved to {leann_meta_path}")
|
|
|
|
|
|
class LeannSearcher:
|
|
"""
|
|
负责加载索引并执行检索的上层 API。
|
|
"""
|
|
def __init__(self, index_path: str, **backend_kwargs):
|
|
leann_meta_path = Path(index_path).parent / f"{Path(index_path).name}.meta.json"
|
|
if not leann_meta_path.exists():
|
|
raise FileNotFoundError(f"Leann metadata file not found at {leann_meta_path}. Was the index built with LeannBuilder?")
|
|
|
|
with open(leann_meta_path, 'r', encoding='utf-8') as f:
|
|
self.meta_data = json.load(f)
|
|
|
|
backend_name = self.meta_data['backend_name']
|
|
self.embedding_model = self.meta_data['embedding_model']
|
|
|
|
backend_factory = BACKEND_REGISTRY.get(backend_name)
|
|
if backend_factory is None:
|
|
raise ValueError(f"Backend '{backend_name}' (from index file) not found or not registered.")
|
|
|
|
# 创建 searcher 实例
|
|
self.backend_impl = backend_factory.searcher(index_path, **backend_kwargs)
|
|
print(f"INFO: LeannSearcher initialized with '{backend_name}' backend using index '{index_path}'.")
|
|
|
|
def search(self, query: str, top_k: int = 5, **search_kwargs):
|
|
query_embedding = _compute_embeddings([query], self.embedding_model)
|
|
|
|
# 委托给后端的 search 方法
|
|
results = self.backend_impl.search(query_embedding, top_k, **search_kwargs)
|
|
|
|
# 丰富返回结果,加入原始文本和元数据
|
|
enriched_results = []
|
|
for label, dist in zip(results['labels'][0], results['distances'][0]):
|
|
if label < len(self.meta_data['chunks']):
|
|
chunk_info = self.meta_data['chunks'][label]
|
|
enriched_results.append({
|
|
"id": label,
|
|
"score": dist,
|
|
"text": chunk_info['text'],
|
|
"metadata": chunk_info['metadata']
|
|
})
|
|
return enriched_results
|
|
|
|
|
|
class LeannChat:
|
|
"""
|
|
封装了 Searcher 和 LLM 的对话式 RAG 接口。
|
|
"""
|
|
def __init__(self, index_path: str, backend_name: Optional[str] = None, llm_model: str = "gpt-4o", **kwargs):
|
|
# 如果用户没有指定后端,尝试从索引元数据中读取
|
|
if backend_name is None:
|
|
leann_meta_path = Path(index_path).parent / f"{Path(index_path).name}.meta.json"
|
|
if not leann_meta_path.exists():
|
|
raise FileNotFoundError(f"Leann metadata file not found at {leann_meta_path}.")
|
|
with open(leann_meta_path, 'r', encoding='utf-8') as f:
|
|
meta_data = json.load(f)
|
|
backend_name = meta_data['backend_name']
|
|
|
|
self.searcher = LeannSearcher(index_path, **kwargs)
|
|
self.llm_model = llm_model
|
|
self.openai_client = None # Lazy load
|
|
|
|
def _get_openai_client(self):
|
|
if self.openai_client is None:
|
|
api_key = os.getenv("OPENAI_API_KEY")
|
|
if not api_key:
|
|
raise ValueError("OPENAI_API_KEY environment variable not set.")
|
|
self.openai_client = openai.OpenAI(api_key=api_key)
|
|
return self.openai_client
|
|
|
|
def ask(self, question: str, **kwargs):
|
|
# 1. 检索
|
|
results = self.searcher.search(question, top_k=3, **kwargs)
|
|
context = "\n\n".join([r['text'] for r in results])
|
|
|
|
# 2. 构建 Prompt
|
|
prompt = f"Context:\n{context}\n\nQuestion: {question}\n\nAnswer:"
|
|
|
|
# 3. 调用 LLM
|
|
print(f"DEBUG: Calling LLM with prompt: {prompt[:200]}...")
|
|
try:
|
|
client = self._get_openai_client()
|
|
response = client.chat.completions.create(
|
|
model=self.llm_model,
|
|
messages=[
|
|
{"role": "system", "content": "You are a helpful assistant that answers questions based on the provided context."},
|
|
{"role": "user", "content": prompt}
|
|
]
|
|
)
|
|
return response.choices[0].message.content
|
|
except Exception as e:
|
|
print(f"ERROR: Failed to call OpenAI API: {e}")
|
|
return f"Error: Could not get a response from the LLM. {e}"
|
|
|
|
def start_interactive(self):
|
|
print("\nLeann Chat started (type 'quit' to exit)")
|
|
while True:
|
|
try:
|
|
user_input = input("You: ").strip()
|
|
if user_input.lower() in ['quit', 'exit']:
|
|
break
|
|
if not user_input:
|
|
continue
|
|
response = self.ask(user_input)
|
|
print(f"Leann: {response}")
|
|
except (KeyboardInterrupt, EOFError):
|
|
print("\nGoodbye!")
|
|
break
|