- Fix ambiguous fullwidth characters (commas, parentheses) in strings and comments - Replace Chinese comments with English equivalents - Fix unused imports with proper noqa annotations for intentional imports - Fix bare except clauses with specific exception types - Fix redefined variables and undefined names - Add ruff noqa annotations for generated protobuf files - Add lint and format check to GitHub Actions CI pipeline
327 lines
10 KiB
Python
327 lines
10 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
Memory comparison between Faiss HNSW and LEANN HNSW backend
|
|
"""
|
|
|
|
import gc
|
|
import logging
|
|
import os
|
|
import subprocess
|
|
import sys
|
|
import time
|
|
from pathlib import Path
|
|
|
|
import psutil
|
|
from llama_index.core.node_parser import SentenceSplitter
|
|
|
|
# Setup logging
|
|
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def get_memory_usage():
|
|
"""Get current memory usage in MB"""
|
|
process = psutil.Process()
|
|
return process.memory_info().rss / 1024 / 1024
|
|
|
|
|
|
def print_memory_stats(stage: str, start_mem: float):
|
|
"""Print memory statistics"""
|
|
current_mem = get_memory_usage()
|
|
diff = current_mem - start_mem
|
|
print(f"[{stage}] Memory: {current_mem:.1f} MB (+{diff:.1f} MB)")
|
|
return current_mem
|
|
|
|
|
|
class MemoryTracker:
|
|
def __init__(self, name: str):
|
|
self.name = name
|
|
self.start_mem = get_memory_usage()
|
|
self.stages = []
|
|
|
|
def checkpoint(self, stage: str):
|
|
current_mem = print_memory_stats(f"{self.name} - {stage}", self.start_mem)
|
|
self.stages.append((stage, current_mem))
|
|
return current_mem
|
|
|
|
def summary(self):
|
|
print(f"\n=== {self.name} Memory Summary ===")
|
|
for stage, mem in self.stages:
|
|
print(f"{stage}: {mem:.1f} MB")
|
|
peak_mem = max(mem for _, mem in self.stages)
|
|
print(f"Peak Memory: {peak_mem:.1f} MB")
|
|
print(f"Total Memory Increase: {peak_mem - self.start_mem:.1f} MB")
|
|
return peak_mem
|
|
|
|
|
|
def test_faiss_hnsw():
|
|
"""Test Faiss HNSW Vector Store in subprocess"""
|
|
print("\n" + "=" * 50)
|
|
print("TESTING FAISS HNSW VECTOR STORE")
|
|
print("=" * 50)
|
|
|
|
try:
|
|
result = subprocess.run(
|
|
[sys.executable, "examples/faiss_only.py"],
|
|
capture_output=True,
|
|
text=True,
|
|
timeout=300,
|
|
)
|
|
|
|
print(result.stdout)
|
|
if result.stderr:
|
|
print("Stderr:", result.stderr)
|
|
|
|
if result.returncode != 0:
|
|
return {
|
|
"peak_memory": float("inf"),
|
|
"error": f"Process failed with code {result.returncode}",
|
|
}
|
|
|
|
# Parse peak memory from output
|
|
lines = result.stdout.split("\n")
|
|
peak_memory = 0.0
|
|
|
|
for line in lines:
|
|
if "Peak Memory:" in line:
|
|
peak_memory = float(line.split("Peak Memory:")[1].split("MB")[0].strip())
|
|
|
|
return {"peak_memory": peak_memory}
|
|
|
|
except Exception as e:
|
|
return {
|
|
"peak_memory": float("inf"),
|
|
"error": str(e),
|
|
}
|
|
|
|
|
|
def test_leann_hnsw():
|
|
"""Test LEANN HNSW Search Memory (load existing index)"""
|
|
print("\n" + "=" * 50)
|
|
print("TESTING LEANN HNSW SEARCH MEMORY")
|
|
print("=" * 50)
|
|
|
|
tracker = MemoryTracker("LEANN HNSW Search")
|
|
|
|
# Import and setup
|
|
tracker.checkpoint("Initial")
|
|
|
|
from leann.api import LeannSearcher
|
|
|
|
tracker.checkpoint("After imports")
|
|
|
|
from leann.api import LeannBuilder
|
|
from llama_index.core import SimpleDirectoryReader
|
|
|
|
# Load and parse documents
|
|
documents = SimpleDirectoryReader(
|
|
"examples/data",
|
|
recursive=True,
|
|
encoding="utf-8",
|
|
required_exts=[".pdf", ".txt", ".md"],
|
|
).load_data()
|
|
|
|
tracker.checkpoint("After document loading")
|
|
|
|
# Parse into chunks
|
|
node_parser = SentenceSplitter(
|
|
chunk_size=256, chunk_overlap=20, separator=" ", paragraph_separator="\n\n"
|
|
)
|
|
|
|
all_texts = []
|
|
for doc in documents:
|
|
nodes = node_parser.get_nodes_from_documents([doc])
|
|
for node in nodes:
|
|
all_texts.append(node.get_content())
|
|
print(f"Total number of chunks: {len(all_texts)}")
|
|
|
|
tracker.checkpoint("After text chunking")
|
|
|
|
# Build LEANN index
|
|
INDEX_DIR = Path("./test_leann_comparison")
|
|
INDEX_PATH = str(INDEX_DIR / "comparison.leann")
|
|
|
|
# Check if index already exists
|
|
if os.path.exists(INDEX_PATH + ".meta.json"):
|
|
print("Loading existing LEANN HNSW index...")
|
|
tracker.checkpoint("After loading existing index")
|
|
else:
|
|
print("Building new LEANN HNSW index...")
|
|
# Clean up previous index
|
|
import shutil
|
|
|
|
if INDEX_DIR.exists():
|
|
shutil.rmtree(INDEX_DIR)
|
|
|
|
builder = LeannBuilder(
|
|
backend_name="hnsw",
|
|
embedding_model="facebook/contriever",
|
|
graph_degree=32,
|
|
complexity=64,
|
|
is_compact=True,
|
|
is_recompute=True,
|
|
num_threads=1,
|
|
)
|
|
|
|
tracker.checkpoint("After builder setup")
|
|
|
|
print("Building LEANN HNSW index...")
|
|
|
|
for chunk_text in all_texts:
|
|
builder.add_text(chunk_text)
|
|
|
|
builder.build_index(INDEX_PATH)
|
|
del builder
|
|
gc.collect()
|
|
|
|
tracker.checkpoint("After index building")
|
|
|
|
# Find existing LEANN index
|
|
index_paths = [
|
|
"./test_leann_comparison/comparison.leann",
|
|
]
|
|
index_path = None
|
|
for path in index_paths:
|
|
if os.path.exists(path + ".meta.json"):
|
|
index_path = path
|
|
break
|
|
|
|
if not index_path:
|
|
print("❌ LEANN index not found. Please build it first")
|
|
return {"peak_memory": float("inf"), "error": "Index not found"}
|
|
|
|
# Measure runtime memory overhead
|
|
print("\nMeasuring runtime memory overhead...")
|
|
runtime_start_mem = get_memory_usage()
|
|
print(f"Before load memory: {runtime_start_mem:.1f} MB")
|
|
tracker.checkpoint("Before load memory")
|
|
|
|
# Load searcher
|
|
searcher = LeannSearcher(index_path)
|
|
tracker.checkpoint("After searcher loading")
|
|
|
|
print("Running search queries...")
|
|
queries = [
|
|
"什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发",
|
|
"What is LEANN and how does it work?",
|
|
"华为诺亚方舟实验室的主要研究内容",
|
|
]
|
|
|
|
for i, query in enumerate(queries):
|
|
start_time = time.time()
|
|
# Use same parameters as Faiss: top_k=20, ef=120 (complexity parameter)
|
|
_ = searcher.search(query, top_k=20, ef=120)
|
|
query_time = time.time() - start_time
|
|
print(f"Query {i + 1} time: {query_time:.3f}s")
|
|
tracker.checkpoint(f"After query {i + 1}")
|
|
|
|
runtime_end_mem = get_memory_usage()
|
|
runtime_overhead = runtime_end_mem - runtime_start_mem
|
|
|
|
peak_memory = tracker.summary()
|
|
print(f"Runtime Memory Overhead: {runtime_overhead:.1f} MB")
|
|
|
|
# Get storage size before cleanup
|
|
storage_size = 0
|
|
INDEX_DIR = Path(index_path).parent
|
|
if INDEX_DIR.exists():
|
|
total_size = 0
|
|
for dirpath, _, filenames in os.walk(str(INDEX_DIR)):
|
|
for filename in filenames:
|
|
# Only count actual index files, skip text data and backups
|
|
if filename.endswith((".old", ".tmp", ".bak", ".jsonl", ".json")):
|
|
continue
|
|
# Count .index, .idx, .map files (actual index structures)
|
|
if filename.endswith((".index", ".idx", ".map")):
|
|
filepath = os.path.join(dirpath, filename)
|
|
total_size += os.path.getsize(filepath)
|
|
storage_size = total_size / (1024 * 1024) # Convert to MB
|
|
|
|
# Clean up
|
|
del searcher
|
|
gc.collect()
|
|
|
|
return {
|
|
"peak_memory": peak_memory,
|
|
"storage_size": storage_size,
|
|
}
|
|
|
|
|
|
def main():
|
|
"""Run comparison tests"""
|
|
print("Storage + Search Memory Comparison: Faiss HNSW vs LEANN HNSW")
|
|
print("=" * 60)
|
|
|
|
# Test Faiss HNSW
|
|
faiss_results = test_faiss_hnsw()
|
|
|
|
# Force garbage collection
|
|
gc.collect()
|
|
time.sleep(2)
|
|
|
|
# Test LEANN HNSW
|
|
leann_results = test_leann_hnsw()
|
|
|
|
# Final comparison
|
|
print("\n" + "=" * 60)
|
|
print("STORAGE + SEARCH MEMORY COMPARISON")
|
|
print("=" * 60)
|
|
|
|
# Get storage sizes
|
|
faiss_storage_size = 0
|
|
leann_storage_size = leann_results.get("storage_size", 0)
|
|
|
|
# Get Faiss storage size using Python
|
|
if os.path.exists("./storage_faiss"):
|
|
total_size = 0
|
|
for dirpath, _, filenames in os.walk("./storage_faiss"):
|
|
for filename in filenames:
|
|
filepath = os.path.join(dirpath, filename)
|
|
total_size += os.path.getsize(filepath)
|
|
faiss_storage_size = total_size / (1024 * 1024) # Convert to MB
|
|
|
|
print("Faiss HNSW:")
|
|
if "error" in faiss_results:
|
|
print(f" ❌ Failed: {faiss_results['error']}")
|
|
else:
|
|
print(f" Search Memory: {faiss_results['peak_memory']:.1f} MB")
|
|
print(f" Storage Size: {faiss_storage_size:.1f} MB")
|
|
|
|
print("\nLEANN HNSW:")
|
|
if "error" in leann_results:
|
|
print(f" ❌ Failed: {leann_results['error']}")
|
|
else:
|
|
print(f" Search Memory: {leann_results['peak_memory']:.1f} MB")
|
|
print(f" Storage Size: {leann_storage_size:.1f} MB")
|
|
|
|
# Calculate improvements only if both tests succeeded
|
|
if "error" not in faiss_results and "error" not in leann_results:
|
|
memory_ratio = faiss_results["peak_memory"] / leann_results["peak_memory"]
|
|
|
|
print("\nLEANN vs Faiss Performance:")
|
|
memory_saving = faiss_results["peak_memory"] - leann_results["peak_memory"]
|
|
print(f" Search Memory: {memory_ratio:.1f}x less ({memory_saving:.1f} MB saved)")
|
|
|
|
# Storage comparison
|
|
if leann_storage_size > faiss_storage_size:
|
|
storage_ratio = leann_storage_size / faiss_storage_size
|
|
print(f" Storage Size: {storage_ratio:.1f}x larger (LEANN uses more storage)")
|
|
elif faiss_storage_size > leann_storage_size:
|
|
storage_ratio = faiss_storage_size / leann_storage_size
|
|
print(f" Storage Size: {storage_ratio:.1f}x smaller (LEANN uses less storage)")
|
|
else:
|
|
print(" Storage Size: similar")
|
|
else:
|
|
if "error" not in leann_results:
|
|
print("\n✅ LEANN HNSW completed successfully!")
|
|
print(f"📊 Search Memory: {leann_results['peak_memory']:.1f} MB")
|
|
print(f"📊 Storage Size: {leann_storage_size:.1f} MB")
|
|
if "error" not in faiss_results:
|
|
print("\n✅ Faiss HNSW completed successfully!")
|
|
print(f"📊 Search Memory: {faiss_results['peak_memory']:.1f} MB")
|
|
print(f"📊 Storage Size: {faiss_storage_size:.1f} MB")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|