Files
LEANN/packages/leann-backend-hnsw/leann_backend_hnsw/hnsw_backend.py
2025-10-08 21:38:55 +00:00

288 lines
11 KiB
Python

import logging
import os
import shutil
import time
from pathlib import Path
from typing import Any, Literal, Optional
import numpy as np
from leann.interface import (
LeannBackendBuilderInterface,
LeannBackendFactoryInterface,
LeannBackendSearcherInterface,
)
from leann.registry import register_backend
from leann.searcher_base import BaseSearcher
from .convert_to_csr import convert_hnsw_graph_to_csr, prune_hnsw_embeddings_inplace
logger = logging.getLogger(__name__)
def get_metric_map():
from . import faiss # type: ignore
return {
"mips": faiss.METRIC_INNER_PRODUCT,
"l2": faiss.METRIC_L2,
"cosine": faiss.METRIC_INNER_PRODUCT,
}
def normalize_l2(data: np.ndarray) -> np.ndarray:
norms = np.linalg.norm(data, axis=1, keepdims=True)
norms[norms == 0] = 1 # Avoid division by zero
return data / norms
@register_backend("hnsw")
class HNSWBackend(LeannBackendFactoryInterface):
@staticmethod
def builder(**kwargs) -> LeannBackendBuilderInterface:
return HNSWBuilder(**kwargs)
@staticmethod
def searcher(index_path: str, **kwargs) -> LeannBackendSearcherInterface:
return HNSWSearcher(index_path, **kwargs)
class HNSWBuilder(LeannBackendBuilderInterface):
def __init__(self, **kwargs):
self.build_params = kwargs.copy()
self.is_compact = self.build_params.setdefault("is_compact", True)
self.is_recompute = self.build_params.setdefault("is_recompute", True)
self.M = self.build_params.setdefault("M", 32)
self.efConstruction = self.build_params.setdefault("efConstruction", 200)
self.distance_metric = self.build_params.setdefault("distance_metric", "mips")
self.dimensions = self.build_params.get("dimensions")
if not self.is_recompute and self.is_compact:
# Auto-correct: non-recompute requires non-compact storage for HNSW
logger.warning(
"is_recompute=False requires non-compact HNSW. Forcing is_compact=False."
)
self.is_compact = False
self.build_params["is_compact"] = False
def build(self, data: np.ndarray, ids: list[str], index_path: str, **kwargs):
from . import faiss # type: ignore
path = Path(index_path)
index_dir = path.parent
index_prefix = path.stem
index_dir.mkdir(parents=True, exist_ok=True)
if data.dtype != np.float32:
logger.warning(f"Converting data to float32, shape: {data.shape}")
data = data.astype(np.float32)
metric_enum = get_metric_map().get(self.distance_metric.lower())
if metric_enum is None:
raise ValueError(f"Unsupported distance_metric '{self.distance_metric}'.")
dim = self.dimensions or data.shape[1]
index = faiss.IndexHNSWFlat(dim, self.M, metric_enum)
index.hnsw.efConstruction = self.efConstruction
if self.distance_metric.lower() == "cosine":
data = normalize_l2(data)
index.add(data.shape[0], faiss.swig_ptr(data))
index_file = index_dir / f"{index_prefix}.index"
faiss.write_index(index, str(index_file))
# Persist ID map so searcher can map FAISS integer labels back to passage IDs
try:
idmap_file = index_dir / f"{index_prefix}.ids.txt"
with open(idmap_file, "w", encoding="utf-8") as f:
for id_str in ids:
f.write(str(id_str) + "\n")
except Exception as e:
logger.warning(f"Failed to write ID map: {e}")
if self.is_compact:
self._convert_to_csr(index_file)
elif self.is_recompute:
prune_hnsw_embeddings_inplace(str(index_file))
def _convert_to_csr(self, index_file: Path):
"""Convert built index to CSR format"""
mode_str = "CSR-pruned" if self.is_recompute else "CSR-standard"
logger.info(f"INFO: Converting HNSW index to {mode_str} format...")
csr_temp_file = index_file.with_suffix(".csr.tmp")
success = convert_hnsw_graph_to_csr(
str(index_file), str(csr_temp_file), prune_embeddings=self.is_recompute
)
if success:
logger.info("✅ CSR conversion successful.")
# index_file_old = index_file.with_suffix(".old")
# shutil.move(str(index_file), str(index_file_old))
shutil.move(str(csr_temp_file), str(index_file))
logger.info(f"INFO: Replaced original index with {mode_str} version at '{index_file}'")
else:
# Clean up and fail fast
if csr_temp_file.exists():
os.remove(csr_temp_file)
raise RuntimeError("CSR conversion failed - cannot proceed with compact format")
class HNSWSearcher(BaseSearcher):
def __init__(self, index_path: str, **kwargs):
super().__init__(
index_path,
backend_module_name="leann_backend_hnsw.hnsw_embedding_server",
**kwargs,
)
from . import faiss # type: ignore
self.distance_metric = (
self.meta.get("backend_kwargs", {}).get("distance_metric", "mips").lower()
)
metric_enum = get_metric_map().get(self.distance_metric)
if metric_enum is None:
raise ValueError(f"Unsupported distance_metric '{self.distance_metric}'.")
backend_meta_kwargs = self.meta.get("backend_kwargs", {})
self.is_compact = self.meta.get("is_compact", backend_meta_kwargs.get("is_compact", True))
default_pruned = backend_meta_kwargs.get("is_recompute", self.is_compact)
self.is_pruned = bool(self.meta.get("is_pruned", default_pruned))
index_file = self.index_dir / f"{self.index_path.stem}.index"
if not index_file.exists():
raise FileNotFoundError(f"HNSW index file not found at {index_file}")
hnsw_config = faiss.HNSWIndexConfig()
hnsw_config.is_compact = self.is_compact
hnsw_config.is_recompute = (
self.is_pruned
) # In C++ code, it's called is_recompute, but it's only for loading IIUC.
self._index = faiss.read_index(str(index_file), faiss.IO_FLAG_MMAP, hnsw_config)
# Load ID map if available
self._id_map: list[str] = []
try:
idmap_file = self.index_dir / f"{self.index_path.stem}.ids.txt"
if idmap_file.exists():
with open(idmap_file, encoding="utf-8") as f:
self._id_map = [line.rstrip("\n") for line in f]
except Exception as e:
logger.warning(f"Failed to load ID map: {e}")
def search(
self,
query: np.ndarray,
top_k: int,
zmq_port: Optional[int] = None,
complexity: int = 64,
beam_width: int = 1,
prune_ratio: float = 0.0,
recompute_embeddings: bool = True,
pruning_strategy: Literal["global", "local", "proportional"] = "global",
batch_size: int = 0,
**kwargs,
) -> dict[str, Any]:
"""
Search for nearest neighbors using HNSW index.
Args:
query: Query vectors (B, D) where B is batch size, D is dimension
top_k: Number of nearest neighbors to return
complexity: Search complexity/efSearch, higher = more accurate but slower
beam_width: Number of parallel search paths/beam_size
prune_ratio: Ratio of neighbors to prune via PQ (0.0-1.0)
recompute_embeddings: Whether to fetch fresh embeddings from server
pruning_strategy: PQ candidate selection strategy:
- "global": Use global PQ queue size for selection (default)
- "local": Local pruning, sort and select best candidates
- "proportional": Base selection on new neighbor count ratio
zmq_port: ZMQ port for embedding server communication. Must be provided if recompute_embeddings is True.
batch_size: Neighbor processing batch size, 0=disabled (HNSW-specific)
**kwargs: Additional HNSW-specific parameters (for legacy compatibility)
Returns:
Dict with 'labels' (list of lists) and 'distances' (ndarray)
"""
from . import faiss # type: ignore
if not recompute_embeddings and self.is_pruned:
raise RuntimeError(
"Recompute is required for pruned/compact HNSW index. "
"Re-run search with --recompute, or rebuild with --no-recompute and --no-compact."
)
if recompute_embeddings:
if zmq_port is None:
raise ValueError("zmq_port must be provided if recompute_embeddings is True")
if query.dtype != np.float32:
query = query.astype(np.float32)
if self.distance_metric == "cosine":
query = normalize_l2(query)
params = faiss.SearchParametersHNSW()
if zmq_port is not None:
params.zmq_port = zmq_port # C++ code won't use this if recompute_embeddings is False
params.efSearch = complexity
params.beam_size = beam_width
# For OpenAI embeddings with cosine distance, disable relative distance check
# This prevents early termination when all scores are in a narrow range
embedding_model = self.meta.get("embedding_model", "").lower()
if self.distance_metric == "cosine" and any(
openai_model in embedding_model for openai_model in ["text-embedding", "openai"]
):
params.check_relative_distance = False
else:
params.check_relative_distance = True
# PQ pruning: direct mapping to HNSW's pq_pruning_ratio
params.pq_pruning_ratio = prune_ratio
# Map pruning_strategy to HNSW parameters
if pruning_strategy == "local":
params.local_prune = True
params.send_neigh_times_ratio = 0.0
elif pruning_strategy == "proportional":
params.local_prune = False
params.send_neigh_times_ratio = 1.0 # Any value > 1e-6 triggers proportional mode
else: # "global"
params.local_prune = False
params.send_neigh_times_ratio = 0.0
# HNSW-specific batch processing parameter
params.batch_size = batch_size
batch_size_query = query.shape[0]
distances = np.empty((batch_size_query, top_k), dtype=np.float32)
labels = np.empty((batch_size_query, top_k), dtype=np.int64)
search_time = time.time()
self._index.search(
query.shape[0],
faiss.swig_ptr(query),
top_k,
faiss.swig_ptr(distances),
faiss.swig_ptr(labels),
params,
)
search_time = time.time() - search_time
logger.info(f" Search time in HNSWSearcher.search() backend: {search_time} seconds")
if self._id_map:
def map_label(x: int) -> str:
if 0 <= x < len(self._id_map):
return self._id_map[x]
return str(x)
string_labels = [
[map_label(int(label)) for label in batch_labels] for batch_labels in labels
]
else:
string_labels = [
[str(int_label) for int_label in batch_labels] for batch_labels in labels
]
return {"labels": string_labels, "distances": distances}