Files
LEANN/packages/leann-backend-hnsw/leann_backend_hnsw/convert_to_csr.py
Andy Lee 5f7806e16f Introducing dynamic index update (#108)
* feat: Add GitHub PR and issue templates for better contributor experience

* simplify: Make templates more concise and user-friendly

* fix: enable is_compact=False, is_recompute=True

* feat: update when recompute

* test

* fix: real recompute

* refactor

* fix: compare with no-recompute

* fix: test
2025-09-21 22:56:27 -07:00

1047 lines
43 KiB
Python

import argparse
import gc # Import garbage collector interface
import logging
import os
import struct
import sys
import time
from dataclasses import dataclass
from typing import Any, Optional
import numpy as np
# Set up logging to avoid print buffer issues
logger = logging.getLogger(__name__)
LOG_LEVEL = os.getenv("LEANN_LOG_LEVEL", "WARNING").upper()
log_level = getattr(logging, LOG_LEVEL, logging.WARNING)
logger.setLevel(log_level)
# --- FourCCs (add more if needed) ---
INDEX_HNSW_FLAT_FOURCC = int.from_bytes(b"IHNf", "little")
# Add other HNSW fourccs if you expect different storage types inside HNSW
# INDEX_HNSW_PQ_FOURCC = int.from_bytes(b'IHNp', 'little')
# INDEX_HNSW_SQ_FOURCC = int.from_bytes(b'IHNs', 'little')
# INDEX_HNSW_CAGRA_FOURCC = int.from_bytes(b'IHNc', 'little') # Example
EXPECTED_HNSW_FOURCCS = {INDEX_HNSW_FLAT_FOURCC} # Modify if needed
NULL_INDEX_FOURCC = int.from_bytes(b"null", "little")
# --- Helper functions for reading/writing binary data ---
def read_struct(f, fmt):
"""Reads data according to the struct format."""
size = struct.calcsize(fmt)
data = f.read(size)
if len(data) != size:
raise EOFError(
f"File ended unexpectedly reading struct fmt '{fmt}'. Expected {size} bytes, got {len(data)}."
)
return struct.unpack(fmt, data)[0]
def read_vector_raw(f, element_fmt_char):
"""Reads a vector (size followed by data), returns count and raw bytes."""
count = -1 # Initialize count
total_bytes = -1 # Initialize total_bytes
try:
count = read_struct(f, "<Q") # size_t usually 64-bit unsigned
element_size = struct.calcsize(element_fmt_char)
# --- FIX for MemoryError: Check for unreasonably large count ---
max_reasonable_count = 10 * (10**9) # ~10 billion elements limit
if count > max_reasonable_count or count < 0:
raise MemoryError(
f"Vector count {count} seems unreasonably large, possibly due to file corruption or incorrect format read."
)
total_bytes = count * element_size
# --- FIX for MemoryError: Check for huge byte size before allocation ---
max_reasonable_bytes = 50 * (1024**3) # ~50 GB limit
if total_bytes > max_reasonable_bytes or total_bytes < 0: # Check for overflow
raise MemoryError(
f"Attempting to read {total_bytes} bytes ({count} elements * {element_size} bytes/element), which exceeds the safety limit. File might be corrupted or format mismatch."
)
data_bytes = f.read(total_bytes)
if len(data_bytes) != total_bytes:
raise EOFError(
f"File ended unexpectedly reading vector data. Expected {total_bytes} bytes, got {len(data_bytes)}."
)
return count, data_bytes
except (MemoryError, OverflowError) as e:
# Add context to the error message
print(
f"\nError during raw vector read (element_fmt='{element_fmt_char}', count={count}, total_bytes={total_bytes}): {e}",
file=sys.stderr,
)
raise e # Re-raise the original error type
def read_numpy_vector(f, np_dtype, struct_fmt_char):
"""Reads a vector into a NumPy array."""
count = -1 # Initialize count for robust error handling
print(
f" Reading vector (dtype={np_dtype}, fmt='{struct_fmt_char}')... ",
end="",
flush=True,
)
try:
count, data_bytes = read_vector_raw(f, struct_fmt_char)
print(f"Count={count}, Bytes={len(data_bytes)}")
if count > 0 and len(data_bytes) > 0:
arr = np.frombuffer(data_bytes, dtype=np_dtype)
if arr.size != count:
raise ValueError(
f"Inconsistent array size after reading. Expected {count}, got {arr.size}"
)
return arr
elif count == 0:
return np.array([], dtype=np_dtype)
else:
raise ValueError("Read zero bytes but count > 0.")
except MemoryError as e:
# Now count should be defined (or -1 if error was in read_struct)
print(
f"\nMemoryError creating NumPy array (dtype={np_dtype}, count={count}). {e}",
file=sys.stderr,
)
raise e
except Exception as e: # Catch other potential errors like ValueError
print(
f"\nError reading numpy vector (dtype={np_dtype}, fmt='{struct_fmt_char}', count={count}): {e}",
file=sys.stderr,
)
raise e
def write_numpy_vector(f, arr, struct_fmt_char):
"""Writes a NumPy array as a vector (size followed by data)."""
count = arr.size
f.write(struct.pack("<Q", count))
try:
expected_dtype = np.dtype(struct_fmt_char)
if arr.dtype != expected_dtype:
data_to_write = arr.astype(expected_dtype).tobytes()
else:
data_to_write = arr.tobytes()
f.write(data_to_write)
del data_to_write # Hint GC
except MemoryError as e:
print(
f"\nMemoryError converting NumPy array to bytes for writing (size={count}, dtype={arr.dtype}). {e}",
file=sys.stderr,
)
raise e
def write_list_vector(f, lst, struct_fmt_char):
"""Writes a Python list as a vector iteratively."""
count = len(lst)
f.write(struct.pack("<Q", count))
fmt = "<" + struct_fmt_char
chunk_size = 1024 * 1024
element_size = struct.calcsize(fmt)
# Allocate buffer outside the loop if possible, or handle MemoryError during allocation
try:
buffer = bytearray(chunk_size * element_size)
except MemoryError:
print(
f"MemoryError: Cannot allocate buffer for writing list vector chunk (size {chunk_size * element_size} bytes).",
file=sys.stderr,
)
raise
buffer_count = 0
for i, item in enumerate(lst):
try:
offset = buffer_count * element_size
struct.pack_into(fmt, buffer, offset, item)
buffer_count += 1
if buffer_count == chunk_size or i == count - 1:
f.write(buffer[: buffer_count * element_size])
buffer_count = 0
except struct.error as e:
print(
f"\nStruct packing error for item {item} at index {i} with format '{fmt}'. {e}",
file=sys.stderr,
)
raise e
def get_cum_neighbors(cum_nneighbor_per_level_np, level):
"""Helper to get cumulative neighbors count, matching C++ logic."""
if level < 0:
return 0
if level < len(cum_nneighbor_per_level_np):
return cum_nneighbor_per_level_np[level]
else:
return cum_nneighbor_per_level_np[-1] if len(cum_nneighbor_per_level_np) > 0 else 0
def write_compact_format(
f_out,
original_hnsw_data,
assign_probas_np,
cum_nneighbor_per_level_np,
levels_np,
compact_level_ptr,
compact_node_offsets_np,
compact_neighbors_data,
storage_fourcc,
storage_data,
):
"""Write HNSW data in compact format following C++ read order exactly."""
# Write IndexHNSW Header
f_out.write(struct.pack("<I", original_hnsw_data["index_fourcc"]))
f_out.write(struct.pack("<i", original_hnsw_data["d"]))
f_out.write(struct.pack("<q", original_hnsw_data["ntotal"]))
f_out.write(struct.pack("<q", original_hnsw_data["dummy1"]))
f_out.write(struct.pack("<q", original_hnsw_data["dummy2"]))
f_out.write(struct.pack("<?", original_hnsw_data["is_trained"]))
f_out.write(struct.pack("<i", original_hnsw_data["metric_type"]))
if original_hnsw_data["metric_type"] > 1:
f_out.write(struct.pack("<f", original_hnsw_data["metric_arg"]))
# Write HNSW struct parts (standard order)
write_numpy_vector(f_out, assign_probas_np, "d")
write_numpy_vector(f_out, cum_nneighbor_per_level_np, "i")
write_numpy_vector(f_out, levels_np, "i")
# Write compact format flag
f_out.write(struct.pack("<?", True)) # storage_is_compact = True
# Write compact data in CORRECT C++ read order: level_ptr, node_offsets FIRST
if isinstance(compact_level_ptr, np.ndarray):
write_numpy_vector(f_out, compact_level_ptr, "Q")
else:
write_list_vector(f_out, compact_level_ptr, "Q")
write_numpy_vector(f_out, compact_node_offsets_np, "Q")
# Write HNSW scalar parameters
f_out.write(struct.pack("<i", original_hnsw_data["entry_point"]))
f_out.write(struct.pack("<i", original_hnsw_data["max_level"]))
f_out.write(struct.pack("<i", original_hnsw_data["efConstruction"]))
f_out.write(struct.pack("<i", original_hnsw_data["efSearch"]))
f_out.write(struct.pack("<i", original_hnsw_data["dummy_upper_beam"]))
# Write storage fourcc (this determines how to read what follows)
f_out.write(struct.pack("<I", storage_fourcc))
# Write compact neighbors data AFTER storage fourcc
write_list_vector(f_out, compact_neighbors_data, "i")
# Write storage data if not NULL (only after neighbors)
if storage_fourcc != NULL_INDEX_FOURCC and storage_data:
f_out.write(storage_data)
@dataclass
class HNSWComponents:
original_hnsw_data: dict[str, Any]
assign_probas_np: np.ndarray
cum_nneighbor_per_level_np: np.ndarray
levels_np: np.ndarray
is_compact: bool
compact_level_ptr: Optional[np.ndarray] = None
compact_node_offsets_np: Optional[np.ndarray] = None
compact_neighbors_data: Optional[list[int]] = None
offsets_np: Optional[np.ndarray] = None
neighbors_np: Optional[np.ndarray] = None
storage_fourcc: int = NULL_INDEX_FOURCC
storage_data: bytes = b""
def _read_hnsw_structure(f) -> HNSWComponents:
original_hnsw_data: dict[str, Any] = {}
hnsw_index_fourcc = read_struct(f, "<I")
if hnsw_index_fourcc not in EXPECTED_HNSW_FOURCCS:
raise ValueError(
f"Unexpected HNSW FourCC: {hnsw_index_fourcc:08x}. Expected one of {EXPECTED_HNSW_FOURCCS}."
)
original_hnsw_data["index_fourcc"] = hnsw_index_fourcc
original_hnsw_data["d"] = read_struct(f, "<i")
original_hnsw_data["ntotal"] = read_struct(f, "<q")
original_hnsw_data["dummy1"] = read_struct(f, "<q")
original_hnsw_data["dummy2"] = read_struct(f, "<q")
original_hnsw_data["is_trained"] = read_struct(f, "?")
original_hnsw_data["metric_type"] = read_struct(f, "<i")
original_hnsw_data["metric_arg"] = 0.0
if original_hnsw_data["metric_type"] > 1:
original_hnsw_data["metric_arg"] = read_struct(f, "<f")
assign_probas_np = read_numpy_vector(f, np.float64, "d")
cum_nneighbor_per_level_np = read_numpy_vector(f, np.int32, "i")
levels_np = read_numpy_vector(f, np.int32, "i")
ntotal = len(levels_np)
if ntotal != original_hnsw_data["ntotal"]:
original_hnsw_data["ntotal"] = ntotal
pos_before_compact = f.tell()
is_compact_flag = None
try:
is_compact_flag = read_struct(f, "<?")
except EOFError:
is_compact_flag = None
if is_compact_flag:
compact_level_ptr = read_numpy_vector(f, np.uint64, "Q")
compact_node_offsets_np = read_numpy_vector(f, np.uint64, "Q")
original_hnsw_data["entry_point"] = read_struct(f, "<i")
original_hnsw_data["max_level"] = read_struct(f, "<i")
original_hnsw_data["efConstruction"] = read_struct(f, "<i")
original_hnsw_data["efSearch"] = read_struct(f, "<i")
original_hnsw_data["dummy_upper_beam"] = read_struct(f, "<i")
storage_fourcc = read_struct(f, "<I")
compact_neighbors_data_np = read_numpy_vector(f, np.int32, "i")
compact_neighbors_data = compact_neighbors_data_np.tolist()
storage_data = f.read()
return HNSWComponents(
original_hnsw_data=original_hnsw_data,
assign_probas_np=assign_probas_np,
cum_nneighbor_per_level_np=cum_nneighbor_per_level_np,
levels_np=levels_np,
is_compact=True,
compact_level_ptr=compact_level_ptr,
compact_node_offsets_np=compact_node_offsets_np,
compact_neighbors_data=compact_neighbors_data,
storage_fourcc=storage_fourcc,
storage_data=storage_data,
)
# Non-compact case
f.seek(pos_before_compact)
pos_before_probe = f.tell()
try:
suspected_flag = read_struct(f, "<B")
if suspected_flag != 0x00:
f.seek(pos_before_probe)
except EOFError:
f.seek(pos_before_probe)
offsets_np = read_numpy_vector(f, np.uint64, "Q")
neighbors_np = read_numpy_vector(f, np.int32, "i")
original_hnsw_data["entry_point"] = read_struct(f, "<i")
original_hnsw_data["max_level"] = read_struct(f, "<i")
original_hnsw_data["efConstruction"] = read_struct(f, "<i")
original_hnsw_data["efSearch"] = read_struct(f, "<i")
original_hnsw_data["dummy_upper_beam"] = read_struct(f, "<i")
storage_fourcc = NULL_INDEX_FOURCC
storage_data = b""
try:
storage_fourcc = read_struct(f, "<I")
storage_data = f.read()
except EOFError:
storage_fourcc = NULL_INDEX_FOURCC
return HNSWComponents(
original_hnsw_data=original_hnsw_data,
assign_probas_np=assign_probas_np,
cum_nneighbor_per_level_np=cum_nneighbor_per_level_np,
levels_np=levels_np,
is_compact=False,
offsets_np=offsets_np,
neighbors_np=neighbors_np,
storage_fourcc=storage_fourcc,
storage_data=storage_data,
)
def _read_hnsw_structure_from_file(path: str) -> HNSWComponents:
with open(path, "rb") as f:
return _read_hnsw_structure(f)
def write_original_format(
f_out,
original_hnsw_data,
assign_probas_np,
cum_nneighbor_per_level_np,
levels_np,
offsets_np,
neighbors_np,
storage_fourcc,
storage_data,
):
"""Write non-compact HNSW data in original FAISS order."""
f_out.write(struct.pack("<I", original_hnsw_data["index_fourcc"]))
f_out.write(struct.pack("<i", original_hnsw_data["d"]))
f_out.write(struct.pack("<q", original_hnsw_data["ntotal"]))
f_out.write(struct.pack("<q", original_hnsw_data["dummy1"]))
f_out.write(struct.pack("<q", original_hnsw_data["dummy2"]))
f_out.write(struct.pack("<?", original_hnsw_data["is_trained"]))
f_out.write(struct.pack("<i", original_hnsw_data["metric_type"]))
if original_hnsw_data["metric_type"] > 1:
f_out.write(struct.pack("<f", original_hnsw_data["metric_arg"]))
write_numpy_vector(f_out, assign_probas_np, "d")
write_numpy_vector(f_out, cum_nneighbor_per_level_np, "i")
write_numpy_vector(f_out, levels_np, "i")
write_numpy_vector(f_out, offsets_np, "Q")
write_numpy_vector(f_out, neighbors_np, "i")
f_out.write(struct.pack("<i", original_hnsw_data["entry_point"]))
f_out.write(struct.pack("<i", original_hnsw_data["max_level"]))
f_out.write(struct.pack("<i", original_hnsw_data["efConstruction"]))
f_out.write(struct.pack("<i", original_hnsw_data["efSearch"]))
f_out.write(struct.pack("<i", original_hnsw_data["dummy_upper_beam"]))
f_out.write(struct.pack("<I", storage_fourcc))
if storage_fourcc != NULL_INDEX_FOURCC and storage_data:
f_out.write(storage_data)
def prune_hnsw_embeddings(input_filename: str, output_filename: str) -> bool:
"""Rewrite an HNSW index while dropping the embedded storage section."""
start_time = time.time()
try:
with open(input_filename, "rb") as f_in, open(output_filename, "wb") as f_out:
original_hnsw_data: dict[str, Any] = {}
hnsw_index_fourcc = read_struct(f_in, "<I")
if hnsw_index_fourcc not in EXPECTED_HNSW_FOURCCS:
print(
f"Error: Expected HNSW Index FourCC ({list(EXPECTED_HNSW_FOURCCS)}), got {hnsw_index_fourcc:08x}.",
file=sys.stderr,
)
return False
original_hnsw_data["index_fourcc"] = hnsw_index_fourcc
original_hnsw_data["d"] = read_struct(f_in, "<i")
original_hnsw_data["ntotal"] = read_struct(f_in, "<q")
original_hnsw_data["dummy1"] = read_struct(f_in, "<q")
original_hnsw_data["dummy2"] = read_struct(f_in, "<q")
original_hnsw_data["is_trained"] = read_struct(f_in, "?")
original_hnsw_data["metric_type"] = read_struct(f_in, "<i")
original_hnsw_data["metric_arg"] = 0.0
if original_hnsw_data["metric_type"] > 1:
original_hnsw_data["metric_arg"] = read_struct(f_in, "<f")
assign_probas_np = read_numpy_vector(f_in, np.float64, "d")
cum_nneighbor_per_level_np = read_numpy_vector(f_in, np.int32, "i")
levels_np = read_numpy_vector(f_in, np.int32, "i")
ntotal = len(levels_np)
if ntotal != original_hnsw_data["ntotal"]:
original_hnsw_data["ntotal"] = ntotal
pos_before_compact = f_in.tell()
is_compact_flag = None
try:
is_compact_flag = read_struct(f_in, "<?")
except EOFError:
is_compact_flag = None
if is_compact_flag:
compact_level_ptr = read_numpy_vector(f_in, np.uint64, "Q")
compact_node_offsets_np = read_numpy_vector(f_in, np.uint64, "Q")
original_hnsw_data["entry_point"] = read_struct(f_in, "<i")
original_hnsw_data["max_level"] = read_struct(f_in, "<i")
original_hnsw_data["efConstruction"] = read_struct(f_in, "<i")
original_hnsw_data["efSearch"] = read_struct(f_in, "<i")
original_hnsw_data["dummy_upper_beam"] = read_struct(f_in, "<i")
_storage_fourcc = read_struct(f_in, "<I")
compact_neighbors_data_np = read_numpy_vector(f_in, np.int32, "i")
compact_neighbors_data = compact_neighbors_data_np.tolist()
_storage_data = f_in.read()
write_compact_format(
f_out,
original_hnsw_data,
assign_probas_np,
cum_nneighbor_per_level_np,
levels_np,
compact_level_ptr,
compact_node_offsets_np,
compact_neighbors_data,
NULL_INDEX_FOURCC,
b"",
)
else:
f_in.seek(pos_before_compact)
pos_before_probe = f_in.tell()
try:
suspected_flag = read_struct(f_in, "<B")
if suspected_flag != 0x00:
f_in.seek(pos_before_probe)
except EOFError:
f_in.seek(pos_before_probe)
offsets_np = read_numpy_vector(f_in, np.uint64, "Q")
neighbors_np = read_numpy_vector(f_in, np.int32, "i")
original_hnsw_data["entry_point"] = read_struct(f_in, "<i")
original_hnsw_data["max_level"] = read_struct(f_in, "<i")
original_hnsw_data["efConstruction"] = read_struct(f_in, "<i")
original_hnsw_data["efSearch"] = read_struct(f_in, "<i")
original_hnsw_data["dummy_upper_beam"] = read_struct(f_in, "<i")
_storage_fourcc = None
_storage_data = b""
try:
_storage_fourcc = read_struct(f_in, "<I")
_storage_data = f_in.read()
except EOFError:
_storage_fourcc = NULL_INDEX_FOURCC
write_original_format(
f_out,
original_hnsw_data,
assign_probas_np,
cum_nneighbor_per_level_np,
levels_np,
offsets_np,
neighbors_np,
NULL_INDEX_FOURCC,
b"",
)
print(f"[{time.time() - start_time:.2f}s] Pruned embeddings from {input_filename}")
return True
except Exception as exc:
print(f"Failed to prune embeddings: {exc}", file=sys.stderr)
return False
# --- Main Conversion Logic ---
def convert_hnsw_graph_to_csr(input_filename, output_filename, prune_embeddings=True):
"""
Converts an HNSW graph file to the CSR format.
Supports both original and already-compact formats (backward compatibility).
Args:
input_filename: Input HNSW index file
output_filename: Output CSR index file
prune_embeddings: Whether to prune embedding storage (write NULL storage marker)
"""
# Keep prints simple; rely on CI runner to flush output as needed
print(f"Starting conversion: {input_filename} -> {output_filename}")
start_time = time.time()
original_hnsw_data = {}
neighbors_np = None # Initialize to allow check in finally block
try:
with open(input_filename, "rb") as f_in, open(output_filename, "wb") as f_out:
# --- Read IndexHNSW FourCC and Header ---
print(f"[{time.time() - start_time:.2f}s] Reading Index HNSW header...")
# ... (Keep the header reading logic as before) ...
hnsw_index_fourcc = read_struct(f_in, "<I")
if hnsw_index_fourcc not in EXPECTED_HNSW_FOURCCS:
print(
f"Error: Expected HNSW Index FourCC ({list(EXPECTED_HNSW_FOURCCS)}), got {hnsw_index_fourcc:08x}.",
file=sys.stderr,
)
return False
original_hnsw_data["index_fourcc"] = hnsw_index_fourcc
original_hnsw_data["d"] = read_struct(f_in, "<i")
original_hnsw_data["ntotal"] = read_struct(f_in, "<q")
original_hnsw_data["dummy1"] = read_struct(f_in, "<q")
original_hnsw_data["dummy2"] = read_struct(f_in, "<q")
original_hnsw_data["is_trained"] = read_struct(f_in, "?")
original_hnsw_data["metric_type"] = read_struct(f_in, "<i")
original_hnsw_data["metric_arg"] = 0.0
if original_hnsw_data["metric_type"] > 1:
original_hnsw_data["metric_arg"] = read_struct(f_in, "<f")
print(
f"[{time.time() - start_time:.2f}s] Header read: d={original_hnsw_data['d']}, ntotal={original_hnsw_data['ntotal']}"
)
# --- Read original HNSW struct data ---
print(f"[{time.time() - start_time:.2f}s] Reading HNSW struct vectors...")
assign_probas_np = read_numpy_vector(f_in, np.float64, "d")
print(
f"[{time.time() - start_time:.2f}s] Read assign_probas ({assign_probas_np.size})"
)
gc.collect()
cum_nneighbor_per_level_np = read_numpy_vector(f_in, np.int32, "i")
print(
f"[{time.time() - start_time:.2f}s] Read cum_nneighbor_per_level ({cum_nneighbor_per_level_np.size})"
)
gc.collect()
levels_np = read_numpy_vector(f_in, np.int32, "i")
print(f"[{time.time() - start_time:.2f}s] Read levels ({levels_np.size})")
gc.collect()
ntotal = len(levels_np)
if ntotal != original_hnsw_data["ntotal"]:
print(
f"Warning: ntotal mismatch! Header says {original_hnsw_data['ntotal']}, levels vector size is {ntotal}. Using levels vector size.",
file=sys.stderr,
)
original_hnsw_data["ntotal"] = ntotal
# --- Check for compact format flag ---
print(f"[{time.time() - start_time:.2f}s] Probing for compact storage flag...")
pos_before_compact = f_in.tell()
try:
is_compact_flag = read_struct(f_in, "<?")
print(f"[{time.time() - start_time:.2f}s] Found compact flag: {is_compact_flag}")
if is_compact_flag:
# Input is already in compact format - read compact data
print(
f"[{time.time() - start_time:.2f}s] Input is already in compact format, reading compact data..."
)
compact_level_ptr = read_numpy_vector(f_in, np.uint64, "Q")
print(
f"[{time.time() - start_time:.2f}s] Read compact_level_ptr ({compact_level_ptr.size})"
)
compact_node_offsets_np = read_numpy_vector(f_in, np.uint64, "Q")
print(
f"[{time.time() - start_time:.2f}s] Read compact_node_offsets ({compact_node_offsets_np.size})"
)
# Read scalar parameters
original_hnsw_data["entry_point"] = read_struct(f_in, "<i")
original_hnsw_data["max_level"] = read_struct(f_in, "<i")
original_hnsw_data["efConstruction"] = read_struct(f_in, "<i")
original_hnsw_data["efSearch"] = read_struct(f_in, "<i")
original_hnsw_data["dummy_upper_beam"] = read_struct(f_in, "<i")
print(
f"[{time.time() - start_time:.2f}s] Read scalar params (ep={original_hnsw_data['entry_point']}, max_lvl={original_hnsw_data['max_level']})"
)
# Read storage fourcc
storage_fourcc = read_struct(f_in, "<I")
print(
f"[{time.time() - start_time:.2f}s] Found storage fourcc: {storage_fourcc:08x}"
)
if prune_embeddings and storage_fourcc != NULL_INDEX_FOURCC:
# Read compact neighbors data
compact_neighbors_data_np = read_numpy_vector(f_in, np.int32, "i")
print(
f"[{time.time() - start_time:.2f}s] Read compact neighbors data ({compact_neighbors_data_np.size})"
)
compact_neighbors_data = compact_neighbors_data_np.tolist()
del compact_neighbors_data_np
# Skip storage data and write with NULL marker
print(
f"[{time.time() - start_time:.2f}s] Pruning embeddings: Writing NULL storage marker."
)
storage_fourcc = NULL_INDEX_FOURCC
elif not prune_embeddings:
# Read and preserve compact neighbors and storage
compact_neighbors_data_np = read_numpy_vector(f_in, np.int32, "i")
compact_neighbors_data = compact_neighbors_data_np.tolist()
del compact_neighbors_data_np
# Read remaining storage data
storage_data = f_in.read()
else:
# Already pruned (NULL storage)
compact_neighbors_data_np = read_numpy_vector(f_in, np.int32, "i")
compact_neighbors_data = compact_neighbors_data_np.tolist()
del compact_neighbors_data_np
storage_data = b""
# Write the updated compact format
print(f"[{time.time() - start_time:.2f}s] Writing updated compact format...")
write_compact_format(
f_out,
original_hnsw_data,
assign_probas_np,
cum_nneighbor_per_level_np,
levels_np,
compact_level_ptr,
compact_node_offsets_np,
compact_neighbors_data,
storage_fourcc,
storage_data if not prune_embeddings else b"",
)
print(f"[{time.time() - start_time:.2f}s] Conversion complete.")
return True
else:
# is_compact=False, rewind and read original format
f_in.seek(pos_before_compact)
print(
f"[{time.time() - start_time:.2f}s] Compact flag is False, reading original format..."
)
except EOFError:
# No compact flag found, assume original format
f_in.seek(pos_before_compact)
print(
f"[{time.time() - start_time:.2f}s] No compact flag found, assuming original format..."
)
# --- Handle potential extra byte in original format (like C++ code) ---
print(
f"[{time.time() - start_time:.2f}s] Probing for potential extra byte before non-compact offsets..."
)
pos_before_probe = f_in.tell()
try:
suspected_flag = read_struct(f_in, "<B") # Read 1 byte
if suspected_flag == 0x00:
print(
f"[{time.time() - start_time:.2f}s] Found and consumed an unexpected 0x00 byte."
)
elif suspected_flag == 0x01:
print(
f"[{time.time() - start_time:.2f}s] ERROR: Found 0x01 but is_compact should be False"
)
raise ValueError("Inconsistent compact flag state")
else:
# Rewind - this byte is part of offsets data
f_in.seek(pos_before_probe)
print(
f"[{time.time() - start_time:.2f}s] Rewound to original position (byte was 0x{suspected_flag:02x})"
)
except EOFError:
f_in.seek(pos_before_probe)
print(
f"[{time.time() - start_time:.2f}s] No extra byte found (EOF), proceeding with offsets read"
)
# --- Read original format data ---
offsets_np = read_numpy_vector(f_in, np.uint64, "Q")
print(f"[{time.time() - start_time:.2f}s] Read offsets ({offsets_np.size})")
if len(offsets_np) != ntotal + 1:
raise ValueError(
f"Inconsistent offsets size: len(levels)={ntotal} but len(offsets)={len(offsets_np)}"
)
gc.collect()
print(f"[{time.time() - start_time:.2f}s] Attempting to read neighbors vector...")
neighbors_np = read_numpy_vector(f_in, np.int32, "i")
print(f"[{time.time() - start_time:.2f}s] Read neighbors ({neighbors_np.size})")
expected_neighbors_size = offsets_np[-1] if ntotal > 0 else 0
if neighbors_np.size != expected_neighbors_size:
print(
f"Warning: neighbors vector size mismatch. Expected {expected_neighbors_size} based on offsets, got {neighbors_np.size}."
)
gc.collect()
original_hnsw_data["entry_point"] = read_struct(f_in, "<i")
original_hnsw_data["max_level"] = read_struct(f_in, "<i")
original_hnsw_data["efConstruction"] = read_struct(f_in, "<i")
original_hnsw_data["efSearch"] = read_struct(f_in, "<i")
original_hnsw_data["dummy_upper_beam"] = read_struct(f_in, "<i")
print(
f"[{time.time() - start_time:.2f}s] Read scalar params (ep={original_hnsw_data['entry_point']}, max_lvl={original_hnsw_data['max_level']})"
)
print(f"[{time.time() - start_time:.2f}s] Checking for storage data...")
storage_fourcc = None
try:
storage_fourcc = read_struct(f_in, "<I")
print(
f"[{time.time() - start_time:.2f}s] Found storage fourcc: {storage_fourcc:08x}."
)
except EOFError:
print(f"[{time.time() - start_time:.2f}s] No storage data found (EOF).")
except Exception as e:
print(
f"[{time.time() - start_time:.2f}s] Error reading potential storage data: {e}"
)
# --- Perform Conversion ---
print(f"[{time.time() - start_time:.2f}s] Converting to CSR format...")
# Use lists for potentially huge data, np for offsets
compact_neighbors_data = []
compact_level_ptr = []
compact_node_offsets_np = np.zeros(ntotal + 1, dtype=np.uint64)
current_level_ptr_idx = 0
current_data_idx = 0
total_valid_neighbors_counted = 0 # For validation
# Optimize calculation by getting slices once per node if possible
for i in range(ntotal):
if i > 0 and i % (ntotal // 100 or 1) == 0: # Log progress roughly every 1%
progress = (i / ntotal) * 100
elapsed = time.time() - start_time
print(
f"\r[{elapsed:.2f}s] Converting node {i}/{ntotal} ({progress:.1f}%)...",
end="",
)
node_max_level = levels_np[i] - 1
if node_max_level < -1:
node_max_level = -1
node_ptr_start_index = current_level_ptr_idx
compact_node_offsets_np[i] = node_ptr_start_index
original_offset_start = offsets_np[i]
num_pointers_expected = (node_max_level + 1) + 1
for level in range(node_max_level + 1):
compact_level_ptr.append(current_data_idx)
begin_orig_np = original_offset_start + get_cum_neighbors(
cum_nneighbor_per_level_np, level
)
end_orig_np = original_offset_start + get_cum_neighbors(
cum_nneighbor_per_level_np, level + 1
)
begin_orig = int(begin_orig_np)
end_orig = int(end_orig_np)
neighbors_len = len(neighbors_np) # Cache length
begin_orig = min(max(0, begin_orig), neighbors_len)
end_orig = min(max(begin_orig, end_orig), neighbors_len)
if begin_orig < end_orig:
# Slicing creates a copy, could be memory intensive for large M
# Consider iterating if memory becomes an issue here
level_neighbors_slice = neighbors_np[begin_orig:end_orig]
valid_neighbors_mask = level_neighbors_slice >= 0
num_valid = np.count_nonzero(valid_neighbors_mask)
if num_valid > 0:
# Append valid neighbors
compact_neighbors_data.extend(
level_neighbors_slice[valid_neighbors_mask]
)
current_data_idx += num_valid
total_valid_neighbors_counted += num_valid
compact_level_ptr.append(current_data_idx)
current_level_ptr_idx += num_pointers_expected
compact_node_offsets_np[ntotal] = current_level_ptr_idx
print(
f"\r[{time.time() - start_time:.2f}s] Conversion loop finished. "
) # Clear progress line
# --- Validation Checks ---
print(f"[{time.time() - start_time:.2f}s] Running validation checks...")
valid_check_passed = True
# Check 1: Total valid neighbors count
print(" Checking total valid neighbor count...")
expected_valid_count = np.sum(neighbors_np >= 0)
if total_valid_neighbors_counted != len(compact_neighbors_data):
print(
f"Error: Mismatch between counted valid neighbors ({total_valid_neighbors_counted}) and final compact_data size ({len(compact_neighbors_data)})!",
file=sys.stderr,
)
valid_check_passed = False
if expected_valid_count != len(compact_neighbors_data):
print(
f"Error: Mismatch between NumPy count of valid neighbors ({expected_valid_count}) and final compact_data size ({len(compact_neighbors_data)})!",
file=sys.stderr,
)
valid_check_passed = False
else:
print(f" OK: Total valid neighbors = {len(compact_neighbors_data)}")
# Check 2: Final pointer indices consistency
print(" Checking final pointer indices...")
if compact_node_offsets_np[ntotal] != len(compact_level_ptr):
print(
f"Error: Final node offset ({compact_node_offsets_np[ntotal]}) doesn't match level_ptr size ({len(compact_level_ptr)})!",
file=sys.stderr,
)
valid_check_passed = False
if (
len(compact_level_ptr) > 0 and compact_level_ptr[-1] != len(compact_neighbors_data)
) or (len(compact_level_ptr) == 0 and len(compact_neighbors_data) != 0):
last_ptr = compact_level_ptr[-1] if len(compact_level_ptr) > 0 else -1
print(
f"Error: Last level pointer ({last_ptr}) doesn't match compact_data size ({len(compact_neighbors_data)})!",
file=sys.stderr,
)
valid_check_passed = False
else:
print(" OK: Final pointers match data size.")
if not valid_check_passed:
print(
"Error: Validation checks failed. Output file might be incorrect.",
file=sys.stderr,
)
# Optional: Exit here if validation fails
# return False
# --- Explicitly delete large intermediate arrays ---
print(
f"[{time.time() - start_time:.2f}s] Deleting original neighbors and offsets arrays..."
)
del neighbors_np
del offsets_np
gc.collect()
print(
f" CSR Stats: |data|={len(compact_neighbors_data)}, |level_ptr|={len(compact_level_ptr)}"
)
# --- Write CSR HNSW graph data using unified function ---
print(
f"[{time.time() - start_time:.2f}s] Writing CSR HNSW graph data in FAISS-compatible order..."
)
# Determine storage fourcc and data based on prune_embeddings
if prune_embeddings:
print(" Pruning embeddings: Writing NULL storage marker.")
output_storage_fourcc = NULL_INDEX_FOURCC
storage_data = b""
else:
# Keep embeddings - read and preserve original storage data
if storage_fourcc and storage_fourcc != NULL_INDEX_FOURCC:
print(" Preserving embeddings: Reading original storage data...")
storage_data = f_in.read() # Read remaining storage data
output_storage_fourcc = storage_fourcc
print(f" Read {len(storage_data)} bytes of storage data")
else:
print(" No embeddings found in original file (NULL storage)")
output_storage_fourcc = NULL_INDEX_FOURCC
storage_data = b""
# Use the unified write function
write_compact_format(
f_out,
original_hnsw_data,
assign_probas_np,
cum_nneighbor_per_level_np,
levels_np,
compact_level_ptr,
compact_node_offsets_np,
compact_neighbors_data,
output_storage_fourcc,
storage_data,
)
# Clean up memory
del assign_probas_np, cum_nneighbor_per_level_np, levels_np
del compact_neighbors_data, compact_level_ptr, compact_node_offsets_np
gc.collect()
end_time = time.time()
print(f"[{end_time - start_time:.2f}s] Conversion complete.")
return True
except FileNotFoundError:
print(f"Error: Input file not found: {input_filename}", file=sys.stderr)
return False
except MemoryError as e:
print(
f"\nFatal MemoryError during conversion: {e}. Insufficient RAM.",
file=sys.stderr,
)
# Clean up potentially partially written output file?
try:
os.remove(output_filename)
except OSError:
pass
return False
except EOFError as e:
print(
f"Error: Reached end of file unexpectedly reading {input_filename}. {e}",
file=sys.stderr,
)
try:
os.remove(output_filename)
except OSError:
pass
return False
except Exception as e:
print(f"An unexpected error occurred during conversion: {e}", file=sys.stderr)
import traceback
traceback.print_exc()
try:
os.remove(output_filename)
except OSError:
pass
return False
# Ensure neighbors_np is deleted even if an error occurs after its allocation
finally:
try:
if "neighbors_np" in locals() and neighbors_np is not None:
del neighbors_np
gc.collect()
except NameError:
pass
def prune_hnsw_embeddings_inplace(index_filename: str) -> bool:
"""Convenience wrapper to prune embeddings in-place."""
temp_path = f"{index_filename}.prune.tmp"
success = prune_hnsw_embeddings(index_filename, temp_path)
if success:
try:
os.replace(temp_path, index_filename)
except Exception as exc: # pragma: no cover - defensive
logger.error(f"Failed to replace original index with pruned version: {exc}")
try:
os.remove(temp_path)
except OSError:
pass
return False
else:
try:
os.remove(temp_path)
except OSError:
pass
return success
# --- Script Execution ---
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Convert a Faiss IndexHNSWFlat file to a CSR-based HNSW graph file."
)
parser.add_argument("input_index_file", help="Path to the input IndexHNSWFlat file")
parser.add_argument(
"output_csr_graph_file", help="Path to write the output CSR HNSW graph file"
)
parser.add_argument(
"--prune-embeddings",
action="store_true",
default=True,
help="Prune embedding storage (write NULL storage marker)",
)
parser.add_argument(
"--keep-embeddings",
action="store_true",
help="Keep embedding storage (overrides --prune-embeddings)",
)
args = parser.parse_args()
if not os.path.exists(args.input_index_file):
print(f"Error: Input file not found: {args.input_index_file}", file=sys.stderr)
sys.exit(1)
if os.path.abspath(args.input_index_file) == os.path.abspath(args.output_csr_graph_file):
print("Error: Input and output filenames cannot be the same.", file=sys.stderr)
sys.exit(1)
prune_embeddings = args.prune_embeddings and not args.keep_embeddings
success = convert_hnsw_graph_to_csr(
args.input_index_file, args.output_csr_graph_file, prune_embeddings
)
if not success:
sys.exit(1)