* fix: diskann zmq port and passages * feat: auto discovery of packages and fix passage gen for diskann
261 lines
10 KiB
Python
261 lines
10 KiB
Python
import numpy as np
|
|
import os
|
|
import json
|
|
import struct
|
|
from pathlib import Path
|
|
from typing import Dict, Any
|
|
import contextlib
|
|
import threading
|
|
import time
|
|
import atexit
|
|
import socket
|
|
import subprocess
|
|
import sys
|
|
|
|
from leann.embedding_server_manager import EmbeddingServerManager
|
|
from leann.registry import register_backend
|
|
from leann.interface import (
|
|
LeannBackendFactoryInterface,
|
|
LeannBackendBuilderInterface,
|
|
LeannBackendSearcherInterface
|
|
)
|
|
from . import _diskannpy as diskannpy
|
|
|
|
METRIC_MAP = {
|
|
"mips": diskannpy.Metric.INNER_PRODUCT,
|
|
"l2": diskannpy.Metric.L2,
|
|
"cosine": diskannpy.Metric.COSINE,
|
|
}
|
|
|
|
@contextlib.contextmanager
|
|
def chdir(path):
|
|
original_dir = os.getcwd()
|
|
os.chdir(path)
|
|
try:
|
|
yield
|
|
finally:
|
|
os.chdir(original_dir)
|
|
|
|
def _write_vectors_to_bin(data: np.ndarray, file_path: Path):
|
|
num_vectors, dim = data.shape
|
|
with open(file_path, 'wb') as f:
|
|
f.write(struct.pack('I', num_vectors))
|
|
f.write(struct.pack('I', dim))
|
|
f.write(data.tobytes())
|
|
|
|
@register_backend("diskann")
|
|
class DiskannBackend(LeannBackendFactoryInterface):
|
|
@staticmethod
|
|
def builder(**kwargs) -> LeannBackendBuilderInterface:
|
|
return DiskannBuilder(**kwargs)
|
|
|
|
@staticmethod
|
|
def searcher(index_path: str, **kwargs) -> LeannBackendSearcherInterface:
|
|
path = Path(index_path)
|
|
meta_path = path.parent / f"{path.name}.meta.json"
|
|
if not meta_path.exists():
|
|
raise FileNotFoundError(f"Leann metadata file not found at {meta_path}.")
|
|
|
|
with open(meta_path, 'r') as f:
|
|
meta = json.load(f)
|
|
|
|
# Pass essential metadata to the searcher
|
|
kwargs['meta'] = meta
|
|
return DiskannSearcher(index_path, **kwargs)
|
|
|
|
class DiskannBuilder(LeannBackendBuilderInterface):
|
|
def __init__(self, **kwargs):
|
|
self.build_params = kwargs
|
|
|
|
def _generate_passages_file(self, index_dir: Path, index_prefix: str, **kwargs):
|
|
"""Generate passages file for recompute mode, mirroring HNSW backend."""
|
|
try:
|
|
chunks = kwargs.get('chunks', [])
|
|
if not chunks:
|
|
print("INFO: No chunks data provided, skipping passages file generation for DiskANN.")
|
|
return
|
|
|
|
passages_data = {str(node_id): chunk["text"] for node_id, chunk in enumerate(chunks)}
|
|
|
|
passages_file = index_dir / f"{index_prefix}.passages.json"
|
|
with open(passages_file, 'w', encoding='utf-8') as f:
|
|
json.dump(passages_data, f, ensure_ascii=False, indent=2)
|
|
|
|
print(f"✅ Generated passages file for recompute mode at '{passages_file}' ({len(passages_data)} passages)")
|
|
|
|
except Exception as e:
|
|
print(f"💥 ERROR: Failed to generate passages file for DiskANN. Exception: {e}")
|
|
pass
|
|
|
|
def build(self, data: np.ndarray, index_path: str, **kwargs):
|
|
path = Path(index_path)
|
|
index_dir = path.parent
|
|
index_prefix = path.stem
|
|
|
|
index_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
if data.dtype != np.float32:
|
|
data = data.astype(np.float32)
|
|
if not data.flags['C_CONTIGUOUS']:
|
|
data = np.ascontiguousarray(data)
|
|
|
|
data_filename = f"{index_prefix}_data.bin"
|
|
_write_vectors_to_bin(data, index_dir / data_filename)
|
|
|
|
build_kwargs = {**self.build_params, **kwargs}
|
|
metric_str = build_kwargs.get("distance_metric", "mips").lower()
|
|
metric_enum = METRIC_MAP.get(metric_str)
|
|
if metric_enum is None:
|
|
raise ValueError(f"Unsupported distance_metric '{metric_str}'.")
|
|
|
|
complexity = build_kwargs.get("complexity", 64)
|
|
graph_degree = build_kwargs.get("graph_degree", 32)
|
|
final_index_ram_limit = build_kwargs.get("search_memory_maximum", 4.0)
|
|
indexing_ram_budget = build_kwargs.get("build_memory_maximum", 8.0)
|
|
num_threads = build_kwargs.get("num_threads", 8)
|
|
pq_disk_bytes = build_kwargs.get("pq_disk_bytes", 0)
|
|
codebook_prefix = ""
|
|
is_recompute = build_kwargs.get("is_recompute", False)
|
|
|
|
print(f"INFO: Building DiskANN index for {data.shape[0]} vectors with metric {metric_enum}...")
|
|
|
|
try:
|
|
with chdir(index_dir):
|
|
diskannpy.build_disk_float_index(
|
|
metric_enum,
|
|
data_filename,
|
|
index_prefix,
|
|
complexity,
|
|
graph_degree,
|
|
final_index_ram_limit,
|
|
indexing_ram_budget,
|
|
num_threads,
|
|
pq_disk_bytes,
|
|
codebook_prefix
|
|
)
|
|
print(f"✅ DiskANN index built successfully at '{index_dir / index_prefix}'")
|
|
if is_recompute:
|
|
self._generate_passages_file(index_dir, index_prefix, **build_kwargs)
|
|
except Exception as e:
|
|
print(f"💥 ERROR: DiskANN index build failed. Exception: {e}")
|
|
raise
|
|
finally:
|
|
temp_data_file = index_dir / data_filename
|
|
if temp_data_file.exists():
|
|
os.remove(temp_data_file)
|
|
|
|
class DiskannSearcher(LeannBackendSearcherInterface):
|
|
def __init__(self, index_path: str, **kwargs):
|
|
self.meta = kwargs.get("meta", {})
|
|
if not self.meta:
|
|
raise ValueError("DiskannSearcher requires metadata from .meta.json.")
|
|
|
|
dimensions = self.meta.get("dimensions")
|
|
if not dimensions:
|
|
raise ValueError("Dimensions not found in Leann metadata.")
|
|
|
|
self.distance_metric = self.meta.get("distance_metric", "mips").lower()
|
|
metric_enum = METRIC_MAP.get(self.distance_metric)
|
|
if metric_enum is None:
|
|
raise ValueError(f"Unsupported distance_metric '{self.distance_metric}'.")
|
|
|
|
self.embedding_model = self.meta.get("embedding_model")
|
|
if not self.embedding_model:
|
|
print("WARNING: embedding_model not found in meta.json. Recompute will fail if attempted.")
|
|
|
|
path = Path(index_path)
|
|
self.index_dir = path.parent
|
|
self.index_prefix = path.stem
|
|
|
|
num_threads = kwargs.get("num_threads", 8)
|
|
num_nodes_to_cache = kwargs.get("num_nodes_to_cache", 0)
|
|
self.zmq_port = kwargs.get("zmq_port", 6666)
|
|
|
|
try:
|
|
full_index_prefix = str(self.index_dir / self.index_prefix)
|
|
self._index = diskannpy.StaticDiskFloatIndex(
|
|
metric_enum, full_index_prefix, num_threads, num_nodes_to_cache, 1, self.zmq_port, "", ""
|
|
)
|
|
self.num_threads = num_threads
|
|
self.embedding_server_manager = EmbeddingServerManager(
|
|
backend_module_name="leann_backend_diskann.embedding_server"
|
|
)
|
|
print("✅ DiskANN index loaded successfully.")
|
|
except Exception as e:
|
|
print(f"💥 ERROR: Failed to load DiskANN index. Exception: {e}")
|
|
raise
|
|
|
|
def search(self, query: np.ndarray, top_k: int, **kwargs) -> Dict[str, Any]:
|
|
complexity = kwargs.get("complexity", 256)
|
|
beam_width = kwargs.get("beam_width", 4)
|
|
|
|
USE_DEFERRED_FETCH = kwargs.get("USE_DEFERRED_FETCH", False)
|
|
skip_search_reorder = kwargs.get("skip_search_reorder", False)
|
|
recompute_beighbor_embeddings = kwargs.get("recompute_beighbor_embeddings", False)
|
|
dedup_node_dis = kwargs.get("dedup_node_dis", False)
|
|
prune_ratio = kwargs.get("prune_ratio", 0.0)
|
|
batch_recompute = kwargs.get("batch_recompute", False)
|
|
global_pruning = kwargs.get("global_pruning", False)
|
|
port = kwargs.get("zmq_port", self.zmq_port)
|
|
|
|
if recompute_beighbor_embeddings:
|
|
print(f"INFO: DiskANN ZMQ mode enabled - ensuring embedding server is running")
|
|
if not self.embedding_model:
|
|
raise ValueError("Cannot use recompute_beighbor_embeddings without 'embedding_model' in meta.json.")
|
|
|
|
passages_file = kwargs.get("passages_file")
|
|
if not passages_file:
|
|
potential_passages_file = self.index_dir / f"{self.index_prefix}.passages.json"
|
|
if potential_passages_file.exists():
|
|
passages_file = str(potential_passages_file)
|
|
print(f"INFO: Automatically found passages file: {passages_file}")
|
|
|
|
if not passages_file:
|
|
raise RuntimeError(
|
|
f"Recompute mode is enabled, but no passages file was found. "
|
|
f"A '{self.index_prefix}.passages.json' file should exist in the index directory "
|
|
f"'{self.index_dir}'. Ensure you build the index with 'recompute=True'."
|
|
)
|
|
|
|
server_started = self.embedding_server_manager.start_server(
|
|
port=self.zmq_port,
|
|
model_name=self.embedding_model,
|
|
distance_metric=self.distance_metric,
|
|
passages_file=passages_file
|
|
)
|
|
|
|
if not server_started:
|
|
raise RuntimeError(f"Failed to start DiskANN embedding server on port {self.zmq_port}")
|
|
|
|
if query.dtype != np.float32:
|
|
query = query.astype(np.float32)
|
|
if query.ndim == 1:
|
|
query = np.expand_dims(query, axis=0)
|
|
|
|
try:
|
|
labels, distances = self._index.batch_search(
|
|
query,
|
|
query.shape[0],
|
|
top_k,
|
|
complexity,
|
|
beam_width,
|
|
self.num_threads,
|
|
USE_DEFERRED_FETCH,
|
|
skip_search_reorder,
|
|
recompute_beighbor_embeddings,
|
|
dedup_node_dis,
|
|
prune_ratio,
|
|
batch_recompute,
|
|
global_pruning
|
|
)
|
|
return {"labels": labels, "distances": distances}
|
|
except Exception as e:
|
|
print(f"💥 ERROR: DiskANN search failed. Exception: {e}")
|
|
batch_size = query.shape[0]
|
|
return {"labels": np.full((batch_size, top_k), -1, dtype=np.int64),
|
|
"distances": np.full((batch_size, top_k), float('inf'), dtype=np.float32)}
|
|
|
|
def __del__(self):
|
|
if hasattr(self, 'embedding_server_manager'):
|
|
self.embedding_server_manager.stop_server()
|