Files
LEANN/docs/configuration-guide.md

14 KiB
Raw Blame History

LEANN Configuration Guide

This guide helps you optimize LEANN for different use cases and understand the trade-offs between various configuration options.

Getting Started: Simple is Better

When first trying LEANN, start with a small dataset to quickly validate your approach:

For document RAG: The default data/ directory works perfectly - includes 2 AI research papers, Pride and Prejudice literature, and a technical report

python -m apps.document_rag --query "What techniques does LEANN use?"

For other data sources: Limit the dataset size for quick testing

# WeChat: Test with recent messages only
python -m apps.wechat_rag --max-items 100 --query "What did we discuss about the project timeline?"

# Browser history: Last few days
python -m apps.browser_rag --max-items 500 --query "Find documentation about vector databases"

# Email: Recent inbox
python -m apps.email_rag --max-items 200 --query "Who sent updates about the deployment status?"

Once validated, scale up gradually:

  • 100 documents → 1,000 → 10,000 → full dataset (--max-items -1)
  • This helps identify issues early before committing to long processing times

Embedding Model Selection: Understanding the Trade-offs

Based on our experience developing LEANN, embedding models fall into three categories:

Small Models (< 100M parameters)

Example: sentence-transformers/all-MiniLM-L6-v2 (22M params)

  • Pros: Lightweight, fast for both indexing and inference
  • Cons: Lower semantic understanding, may miss nuanced relationships
  • Use when: Speed is critical, handling simple queries, interactive mode, or just experimenting with LEANN. If time is not a constraint, consider using a larger/better embedding model

Medium Models (100M-500M parameters)

Example: facebook/contriever (110M params), BAAI/bge-base-en-v1.5 (110M params)

  • Pros: Balanced performance, good multilingual support, reasonable speed
  • Cons: Requires more compute than small models
  • Use when: Need quality results without extreme compute requirements, general-purpose RAG applications

Large Models (500M+ parameters)

Example: Qwen/Qwen3-Embedding-0.6B (600M params), intfloat/multilingual-e5-large (560M params)

  • Pros: Best semantic understanding, captures complex relationships, excellent multilingual support. Qwen3-Embedding-0.6B achieves nearly OpenAI API performance!
  • Cons: Slower inference, longer index build times
  • Use when: Quality is paramount and you have sufficient compute resources. Highly recommended for production use

Quick Start: Cloud and Local Embedding Options

OpenAI Embeddings (Fastest Setup) For immediate testing without local model downloads:

# Set OpenAI embeddings (requires OPENAI_API_KEY)
--embedding-mode openai --embedding-model text-embedding-3-small

Ollama Embeddings (Privacy-Focused) For local embeddings with complete privacy:

# First, pull an embedding model
ollama pull nomic-embed-text

# Use Ollama embeddings
--embedding-mode ollama --embedding-model nomic-embed-text
Cloud vs Local Trade-offs

OpenAI Embeddings (text-embedding-3-small/large)

  • Pros: No local compute needed, consistently fast, high quality
  • Cons: Requires API key, costs money, data leaves your system, known limitations with certain languages
  • When to use: Prototyping, non-sensitive data, need immediate results

Local Embeddings

  • Pros: Complete privacy, no ongoing costs, full control, can sometimes outperform OpenAI embeddings
  • Cons: Slower than cloud APIs, requires local compute resources
  • When to use: Production systems, sensitive data, cost-sensitive applications

Index Selection: Matching Your Scale

HNSW (Hierarchical Navigable Small World)

Best for: Small to medium datasets (< 10M vectors) - Default and recommended for extreme low storage

  • Full recomputation required
  • High memory usage during build phase
  • Excellent recall (95%+)
# Optimal for most use cases
--backend-name hnsw --graph-degree 32 --build-complexity 64

DiskANN

Best for: Large datasets (> 10M vectors, 10GB+ index size) - ⚠️ Beta version, still in active development

  • Uses Product Quantization (PQ) for coarse filtering during graph traversal
  • Novel approach: stores only PQ codes, performs rerank with exact computation in final step
  • Implements a corner case of double-queue: prunes all neighbors and recomputes at the end
# For billion-scale deployments
--backend-name diskann --graph-degree 64 --build-complexity 128

LLM Selection: Engine and Model Comparison

LLM Engines

OpenAI (--llm openai)

  • Pros: Best quality, consistent performance, no local resources needed
  • Cons: Costs money ($0.15-2.5 per million tokens), requires internet, data privacy concerns
  • Models: gpt-4o-mini (fast, cheap), gpt-4o (best quality), o3 (reasoning), o3-mini (reasoning, cheaper)
  • Thinking Budget: Use --thinking-budget low/medium/high for o-series reasoning models (o3, o3-mini, o4-mini)
  • Note: Our current default, but we recommend switching to Ollama for most use cases

Ollama (--llm ollama)

  • Pros: Fully local, free, privacy-preserving, good model variety
  • Cons: Requires local GPU/CPU resources, slower than cloud APIs, need to install extra ollama app and pre-download models by ollama pull
  • Models: qwen3:0.6b (ultra-fast), qwen3:1.7b (balanced), qwen3:4b (good quality), qwen3:7b (high quality), deepseek-r1:1.5b (reasoning)
  • Thinking Budget: Use --thinking-budget low/medium/high for reasoning models like GPT-Oss:20b

HuggingFace (--llm hf)

  • Pros: Free tier available, huge model selection, direct model loading (vs Ollama's server-based approach)
  • Cons: More complex initial setup
  • Models: Qwen/Qwen3-1.7B-FP8

Parameter Tuning Guide

Search Complexity Parameters

--build-complexity (index building)

  • Controls thoroughness during index construction
  • Higher = better recall but slower build
  • Recommendations:
    • 32: Quick prototyping
    • 64: Balanced (default)
    • 128: Production systems
    • 256: Maximum quality

--search-complexity (query time)

  • Controls search thoroughness
  • Higher = better results but slower
  • Recommendations:
    • 16: Fast/Interactive search
    • 32: High quality with diversity
    • 64+: Maximum accuracy

Top-K Selection

--top-k (number of retrieved chunks)

  • More chunks = better context but slower LLM processing
  • Should be always smaller than --search-complexity
  • Guidelines:
    • 10-20: General questions (default: 20)
    • 30+: Complex multi-hop reasoning requiring comprehensive context

Trade-off formula:

  • Retrieval time ∝ log(n) × search_complexity
  • LLM processing time ∝ top_k × chunk_size
  • Total context = top_k × chunk_size tokens

Thinking Budget for Reasoning Models

--thinking-budget (reasoning effort level)

  • Controls the computational effort for reasoning models
  • Options: low, medium, high
  • Guidelines:
    • low: Fast responses, basic reasoning (default for simple queries)
    • medium: Balanced speed and reasoning depth
    • high: Maximum reasoning effort, best for complex analytical questions
  • Supported Models:
    • Ollama: gpt-oss:20b, gpt-oss:120b
    • OpenAI: o3, o3-mini, o4-mini, o1 (o-series reasoning models)
  • Note: Models without reasoning support will show a warning and proceed without reasoning parameters
  • Example: --thinking-budget high for complex analytical questions

📖 For detailed usage examples and implementation details, check out Thinking Budget Documentation

💡 Quick Examples:

# OpenAI o-series reasoning model
python apps/document_rag.py --query "What are the main techniques LEANN explores?" \
  --index-dir hnswbuild --backend hnsw \
  --llm openai --llm-model o3 --thinking-budget medium

# Ollama reasoning model
python apps/document_rag.py --query "What are the main techniques LEANN explores?" \
  --index-dir hnswbuild --backend hnsw \
  --llm ollama --llm-model gpt-oss:20b --thinking-budget high

Graph Degree (HNSW/DiskANN)

--graph-degree

  • Number of connections per node in the graph
  • Higher = better recall but more memory
  • HNSW: 16-32 (default: 32)
  • DiskANN: 32-128 (default: 64)

Performance Optimization Checklist

If Embedding is Too Slow

  1. Switch to smaller model:

    # From large model
    --embedding-model Qwen/Qwen3-Embedding-0.6B
    # To small model
    --embedding-model sentence-transformers/all-MiniLM-L6-v2
    
  2. Limit dataset size for testing:

    --max-items 1000  # Process first 1k items only
    
  3. Use MLX on Apple Silicon (optional optimization):

    --embedding-mode mlx --embedding-model mlx-community/Qwen3-Embedding-0.6B-8bit
    

    MLX might not be the best choice, as we tested and found that it only offers 1.3x acceleration compared to HF, so maybe using ollama is a better choice for embedding generation

  4. Use Ollama

    --embedding-mode ollama --embedding-model nomic-embed-text
    

    To discover additional embedding models in ollama, check out https://ollama.com/search?c=embedding or read more about embedding models at https://ollama.com/blog/embedding-models, please do check the model size that works best for you

If Search Quality is Poor

  1. Increase retrieval count:

    --top-k 30  # Retrieve more candidates
    
  2. Upgrade embedding model:

    # For English
    --embedding-model BAAI/bge-base-en-v1.5
    # For multilingual
    --embedding-model intfloat/multilingual-e5-large
    

Understanding the Trade-offs

Every configuration choice involves trade-offs:

Factor Small/Fast Large/Quality
Embedding Model all-MiniLM-L6-v2 Qwen/Qwen3-Embedding-0.6B
Chunk Size 512 tokens 128 tokens
Index Type HNSW DiskANN
LLM qwen3:1.7b gpt-4o

The key is finding the right balance for your specific use case. Start small and simple, measure performance, then scale up only where needed.

Low-resource setups

If you dont have a local GPU or builds/searches are too slow, use one or more of the options below.

1) Use OpenAI embeddings (no local compute)

Fastest path with zero local GPU requirements. Set your API key and use OpenAI embeddings during build and search:

export OPENAI_API_KEY=sk-...

# Build with OpenAI embeddings
leann build my-index \
  --embedding-mode openai \
  --embedding-model text-embedding-3-small

# Search with OpenAI embeddings (recompute at query time)
leann search my-index "your query" \
  --recompute-embeddings

2) Run remote builds with SkyPilot (cloud GPU)

Offload embedding generation and index building to a GPU VM using SkyPilot. A template is provided at sky/leann-build.yaml.

# One-time: install and configure SkyPilot
pip install skypilot

# Launch with defaults (L4:1) and mount ./data to ~/leann-data
sky launch -c leann-gpu sky/leann-build.yaml

# Override parameters via -e key=value
sky launch -c leann-gpu sky/leann-build.yaml \
  -e index_name=my-index \
  -e backend=hnsw \
  -e recompute=false \
  -e compact=false \
  -e embedding_mode=sentence-transformers \
  -e embedding_model=Qwen/Qwen3-Embedding-0.6B

# Build remotely (template installs uv + leann CLI)
sky exec leann-gpu -- "leann build my-index --docs ~/leann-data --backend hnsw --complexity 64 --graph-degree 32 --no-recompute --no-compact"

# Copy the built index back to your local .leann
sky cp leann-gpu:~/.leann/indexes/my-index ./.leann/indexes/

3) Disable recomputation to trade storage for speed

If you need lower latency and have more storage/memory, disable recomputation. This stores full embeddings and avoids recomputing at search time.

# Build without recomputation (HNSW requires non-compact in this mode)
leann build my-index --no-recompute --no-compact

# Search without recomputation
leann search my-index "your query" --no-recompute

When to use:

  • Extreme low latency requirements (high QPS, interactive assistants)
  • Read-heavy workloads where storage is cheaper than latency
  • Environments without a stable embedding server

Constraints:

  • HNSW: must use --no-compact when --no-recompute (compact/pruned graphs rely on recomputation)
  • DiskANN: supported; --no-recompute skips selective recompute during search

Storage impact:

  • Storing N embeddings of dimension D with float32 requires approximately N × D × 4 bytes
  • Example: 1,000,000 chunks × 768 dims × 4 bytes ≈ 2.86 GB (plus graph/metadata)

Converting an existing index (rebuild required):

# Rebuild in-place (ensure you still have original docs or can regenerate chunks)
leann build my-index --force --no-recompute --no-compact

Python API usage:

from leann import LeannSearcher

searcher = LeannSearcher("/path/to/my-index.leann")
results = searcher.search("your query", top_k=10, recompute_embeddings=False)

Trade-offs:

  • Lower latency and fewer network hops at query time
  • Significantly higher storage (10100× vs selective recomputation)
  • Slightly larger memory footprint during build and search

Further Reading