- Fix ambiguous fullwidth characters (commas, parentheses) in strings and comments - Replace Chinese comments with English equivalents - Fix unused imports with proper noqa annotations for intentional imports - Fix bare except clauses with specific exception types - Fix redefined variables and undefined names - Add ruff noqa annotations for generated protobuf files - Add lint and format check to GitHub Actions CI pipeline
368 lines
13 KiB
Python
368 lines
13 KiB
Python
import argparse
|
|
import asyncio
|
|
from pathlib import Path
|
|
|
|
from llama_index.core import SimpleDirectoryReader
|
|
from llama_index.core.node_parser import SentenceSplitter
|
|
|
|
from .api import LeannBuilder, LeannChat, LeannSearcher
|
|
|
|
|
|
def extract_pdf_text_with_pymupdf(file_path: str) -> str:
|
|
"""Extract text from PDF using PyMuPDF for better quality."""
|
|
try:
|
|
import fitz # PyMuPDF
|
|
|
|
doc = fitz.open(file_path)
|
|
text = ""
|
|
for page in doc:
|
|
text += page.get_text()
|
|
doc.close()
|
|
return text
|
|
except ImportError:
|
|
# Fallback to default reader
|
|
return None
|
|
|
|
|
|
def extract_pdf_text_with_pdfplumber(file_path: str) -> str:
|
|
"""Extract text from PDF using pdfplumber for better quality."""
|
|
try:
|
|
import pdfplumber
|
|
|
|
text = ""
|
|
with pdfplumber.open(file_path) as pdf:
|
|
for page in pdf.pages:
|
|
text += page.extract_text() or ""
|
|
return text
|
|
except ImportError:
|
|
# Fallback to default reader
|
|
return None
|
|
|
|
|
|
class LeannCLI:
|
|
def __init__(self):
|
|
self.indexes_dir = Path.home() / ".leann" / "indexes"
|
|
self.indexes_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
self.node_parser = SentenceSplitter(
|
|
chunk_size=256, chunk_overlap=128, separator=" ", paragraph_separator="\n\n"
|
|
)
|
|
|
|
def get_index_path(self, index_name: str) -> str:
|
|
index_dir = self.indexes_dir / index_name
|
|
return str(index_dir / "documents.leann")
|
|
|
|
def index_exists(self, index_name: str) -> bool:
|
|
index_dir = self.indexes_dir / index_name
|
|
meta_file = index_dir / "documents.leann.meta.json"
|
|
return meta_file.exists()
|
|
|
|
def create_parser(self) -> argparse.ArgumentParser:
|
|
parser = argparse.ArgumentParser(
|
|
prog="leann",
|
|
description="LEANN - Local Enhanced AI Navigation",
|
|
formatter_class=argparse.RawDescriptionHelpFormatter,
|
|
epilog="""
|
|
Examples:
|
|
leann build my-docs --docs ./documents # Build index named my-docs
|
|
leann search my-docs "query" # Search in my-docs index
|
|
leann ask my-docs "question" # Ask my-docs index
|
|
leann list # List all stored indexes
|
|
""",
|
|
)
|
|
|
|
subparsers = parser.add_subparsers(dest="command", help="Available commands")
|
|
|
|
# Build command
|
|
build_parser = subparsers.add_parser("build", help="Build document index")
|
|
build_parser.add_argument("index_name", help="Index name")
|
|
build_parser.add_argument("--docs", type=str, required=True, help="Documents directory")
|
|
build_parser.add_argument(
|
|
"--backend", type=str, default="hnsw", choices=["hnsw", "diskann"]
|
|
)
|
|
build_parser.add_argument("--embedding-model", type=str, default="facebook/contriever")
|
|
build_parser.add_argument("--force", "-f", action="store_true", help="Force rebuild")
|
|
build_parser.add_argument("--graph-degree", type=int, default=32)
|
|
build_parser.add_argument("--complexity", type=int, default=64)
|
|
build_parser.add_argument("--num-threads", type=int, default=1)
|
|
build_parser.add_argument("--compact", action="store_true", default=True)
|
|
build_parser.add_argument("--recompute", action="store_true", default=True)
|
|
|
|
# Search command
|
|
search_parser = subparsers.add_parser("search", help="Search documents")
|
|
search_parser.add_argument("index_name", help="Index name")
|
|
search_parser.add_argument("query", help="Search query")
|
|
search_parser.add_argument("--top-k", type=int, default=5)
|
|
search_parser.add_argument("--complexity", type=int, default=64)
|
|
search_parser.add_argument("--beam-width", type=int, default=1)
|
|
search_parser.add_argument("--prune-ratio", type=float, default=0.0)
|
|
search_parser.add_argument("--recompute-embeddings", action="store_true")
|
|
search_parser.add_argument(
|
|
"--pruning-strategy",
|
|
choices=["global", "local", "proportional"],
|
|
default="global",
|
|
)
|
|
|
|
# Ask command
|
|
ask_parser = subparsers.add_parser("ask", help="Ask questions")
|
|
ask_parser.add_argument("index_name", help="Index name")
|
|
ask_parser.add_argument(
|
|
"--llm",
|
|
type=str,
|
|
default="ollama",
|
|
choices=["simulated", "ollama", "hf", "openai"],
|
|
)
|
|
ask_parser.add_argument("--model", type=str, default="qwen3:8b")
|
|
ask_parser.add_argument("--host", type=str, default="http://localhost:11434")
|
|
ask_parser.add_argument("--interactive", "-i", action="store_true")
|
|
ask_parser.add_argument("--top-k", type=int, default=20)
|
|
ask_parser.add_argument("--complexity", type=int, default=32)
|
|
ask_parser.add_argument("--beam-width", type=int, default=1)
|
|
ask_parser.add_argument("--prune-ratio", type=float, default=0.0)
|
|
ask_parser.add_argument("--recompute-embeddings", action="store_true")
|
|
ask_parser.add_argument(
|
|
"--pruning-strategy",
|
|
choices=["global", "local", "proportional"],
|
|
default="global",
|
|
)
|
|
|
|
# List command
|
|
subparsers.add_parser("list", help="List all indexes")
|
|
|
|
return parser
|
|
|
|
def list_indexes(self):
|
|
print("Stored LEANN indexes:")
|
|
|
|
if not self.indexes_dir.exists():
|
|
print("No indexes found. Use 'leann build <name> --docs <dir>' to create one.")
|
|
return
|
|
|
|
index_dirs = [d for d in self.indexes_dir.iterdir() if d.is_dir()]
|
|
|
|
if not index_dirs:
|
|
print("No indexes found. Use 'leann build <name> --docs <dir>' to create one.")
|
|
return
|
|
|
|
print(f"Found {len(index_dirs)} indexes:")
|
|
for i, index_dir in enumerate(index_dirs, 1):
|
|
index_name = index_dir.name
|
|
status = "✓" if self.index_exists(index_name) else "✗"
|
|
|
|
print(f" {i}. {index_name} [{status}]")
|
|
if self.index_exists(index_name):
|
|
index_dir / "documents.leann.meta.json"
|
|
size_mb = sum(f.stat().st_size for f in index_dir.iterdir() if f.is_file()) / (
|
|
1024 * 1024
|
|
)
|
|
print(f" Size: {size_mb:.1f} MB")
|
|
|
|
if index_dirs:
|
|
example_name = index_dirs[0].name
|
|
print("\nUsage:")
|
|
print(f' leann search {example_name} "your query"')
|
|
print(f" leann ask {example_name} --interactive")
|
|
|
|
def load_documents(self, docs_dir: str):
|
|
print(f"Loading documents from {docs_dir}...")
|
|
|
|
# Try to use better PDF parsers first
|
|
documents = []
|
|
docs_path = Path(docs_dir)
|
|
|
|
for file_path in docs_path.rglob("*.pdf"):
|
|
print(f"Processing PDF: {file_path}")
|
|
|
|
# Try PyMuPDF first (best quality)
|
|
text = extract_pdf_text_with_pymupdf(str(file_path))
|
|
if text is None:
|
|
# Try pdfplumber
|
|
text = extract_pdf_text_with_pdfplumber(str(file_path))
|
|
|
|
if text:
|
|
# Create a simple document structure
|
|
from llama_index.core import Document
|
|
|
|
doc = Document(text=text, metadata={"source": str(file_path)})
|
|
documents.append(doc)
|
|
else:
|
|
# Fallback to default reader
|
|
print(f"Using default reader for {file_path}")
|
|
default_docs = SimpleDirectoryReader(
|
|
str(file_path.parent),
|
|
filename_as_id=True,
|
|
required_exts=[file_path.suffix],
|
|
).load_data()
|
|
documents.extend(default_docs)
|
|
|
|
# Load other file types with default reader
|
|
other_docs = SimpleDirectoryReader(
|
|
docs_dir,
|
|
recursive=True,
|
|
encoding="utf-8",
|
|
required_exts=[".txt", ".md", ".docx"],
|
|
).load_data(show_progress=True)
|
|
documents.extend(other_docs)
|
|
|
|
all_texts = []
|
|
for doc in documents:
|
|
nodes = self.node_parser.get_nodes_from_documents([doc])
|
|
for node in nodes:
|
|
all_texts.append(node.get_content())
|
|
|
|
print(f"Loaded {len(documents)} documents, {len(all_texts)} chunks")
|
|
return all_texts
|
|
|
|
async def build_index(self, args):
|
|
docs_dir = args.docs
|
|
index_name = args.index_name
|
|
index_dir = self.indexes_dir / index_name
|
|
index_path = self.get_index_path(index_name)
|
|
|
|
if index_dir.exists() and not args.force:
|
|
print(f"Index '{index_name}' already exists. Use --force to rebuild.")
|
|
return
|
|
|
|
all_texts = self.load_documents(docs_dir)
|
|
if not all_texts:
|
|
print("No documents found")
|
|
return
|
|
|
|
index_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
print(f"Building index '{index_name}' with {args.backend} backend...")
|
|
|
|
builder = LeannBuilder(
|
|
backend_name=args.backend,
|
|
embedding_model=args.embedding_model,
|
|
graph_degree=args.graph_degree,
|
|
complexity=args.complexity,
|
|
is_compact=args.compact,
|
|
is_recompute=args.recompute,
|
|
num_threads=args.num_threads,
|
|
)
|
|
|
|
for chunk_text in all_texts:
|
|
builder.add_text(chunk_text)
|
|
|
|
builder.build_index(index_path)
|
|
print(f"Index built at {index_path}")
|
|
|
|
async def search_documents(self, args):
|
|
index_name = args.index_name
|
|
query = args.query
|
|
index_path = self.get_index_path(index_name)
|
|
|
|
if not self.index_exists(index_name):
|
|
print(
|
|
f"Index '{index_name}' not found. Use 'leann build {index_name} --docs <dir>' to create it."
|
|
)
|
|
return
|
|
|
|
searcher = LeannSearcher(index_path=index_path)
|
|
results = searcher.search(
|
|
query,
|
|
top_k=args.top_k,
|
|
complexity=args.complexity,
|
|
beam_width=args.beam_width,
|
|
prune_ratio=args.prune_ratio,
|
|
recompute_embeddings=args.recompute_embeddings,
|
|
pruning_strategy=args.pruning_strategy,
|
|
)
|
|
|
|
print(f"Search results for '{query}' (top {len(results)}):")
|
|
for i, result in enumerate(results, 1):
|
|
print(f"{i}. Score: {result.score:.3f}")
|
|
print(f" {result.text[:200]}...")
|
|
print()
|
|
|
|
async def ask_questions(self, args):
|
|
index_name = args.index_name
|
|
index_path = self.get_index_path(index_name)
|
|
|
|
if not self.index_exists(index_name):
|
|
print(
|
|
f"Index '{index_name}' not found. Use 'leann build {index_name} --docs <dir>' to create it."
|
|
)
|
|
return
|
|
|
|
print(f"Starting chat with index '{index_name}'...")
|
|
print(f"Using {args.model} ({args.llm})")
|
|
|
|
llm_config = {"type": args.llm, "model": args.model}
|
|
if args.llm == "ollama":
|
|
llm_config["host"] = args.host
|
|
|
|
chat = LeannChat(index_path=index_path, llm_config=llm_config)
|
|
|
|
if args.interactive:
|
|
print("LEANN Assistant ready! Type 'quit' to exit")
|
|
print("=" * 40)
|
|
|
|
while True:
|
|
user_input = input("\nYou: ").strip()
|
|
if user_input.lower() in ["quit", "exit", "q"]:
|
|
print("Goodbye!")
|
|
break
|
|
|
|
if not user_input:
|
|
continue
|
|
|
|
response = chat.ask(
|
|
user_input,
|
|
top_k=args.top_k,
|
|
complexity=args.complexity,
|
|
beam_width=args.beam_width,
|
|
prune_ratio=args.prune_ratio,
|
|
recompute_embeddings=args.recompute_embeddings,
|
|
pruning_strategy=args.pruning_strategy,
|
|
)
|
|
print(f"LEANN: {response}")
|
|
else:
|
|
query = input("Enter your question: ").strip()
|
|
if query:
|
|
response = chat.ask(
|
|
query,
|
|
top_k=args.top_k,
|
|
complexity=args.complexity,
|
|
beam_width=args.beam_width,
|
|
prune_ratio=args.prune_ratio,
|
|
recompute_embeddings=args.recompute_embeddings,
|
|
pruning_strategy=args.pruning_strategy,
|
|
)
|
|
print(f"LEANN: {response}")
|
|
|
|
async def run(self, args=None):
|
|
parser = self.create_parser()
|
|
|
|
if args is None:
|
|
args = parser.parse_args()
|
|
|
|
if not args.command:
|
|
parser.print_help()
|
|
return
|
|
|
|
if args.command == "list":
|
|
self.list_indexes()
|
|
elif args.command == "build":
|
|
await self.build_index(args)
|
|
elif args.command == "search":
|
|
await self.search_documents(args)
|
|
elif args.command == "ask":
|
|
await self.ask_questions(args)
|
|
else:
|
|
parser.print_help()
|
|
|
|
|
|
def main():
|
|
import dotenv
|
|
|
|
dotenv.load_dotenv()
|
|
|
|
cli = LeannCLI()
|
|
asyncio.run(cli.run())
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|