- Fix ambiguous fullwidth characters (commas, parentheses) in strings and comments - Replace Chinese comments with English equivalents - Fix unused imports with proper noqa annotations for intentional imports - Fix bare except clauses with specific exception types - Fix redefined variables and undefined names - Add ruff noqa annotations for generated protobuf files - Add lint and format check to GitHub Actions CI pipeline
220 lines
7.2 KiB
Python
220 lines
7.2 KiB
Python
import email
|
|
import os
|
|
from typing import Any
|
|
|
|
from llama_index.core import Document, StorageContext, VectorStoreIndex
|
|
from llama_index.core.node_parser import SentenceSplitter
|
|
from llama_index.core.readers.base import BaseReader
|
|
|
|
|
|
class EmlxReader(BaseReader):
|
|
"""
|
|
Apple Mail .emlx file reader with reduced metadata.
|
|
|
|
Reads individual .emlx files from Apple Mail's storage format.
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
"""Initialize."""
|
|
pass
|
|
|
|
def load_data(self, input_dir: str, **load_kwargs: Any) -> list[Document]:
|
|
"""
|
|
Load data from the input directory containing .emlx files.
|
|
|
|
Args:
|
|
input_dir: Directory containing .emlx files
|
|
**load_kwargs:
|
|
max_count (int): Maximum amount of messages to read.
|
|
"""
|
|
docs: list[Document] = []
|
|
max_count = load_kwargs.get("max_count", 1000)
|
|
count = 0
|
|
|
|
# Walk through the directory recursively
|
|
for dirpath, dirnames, filenames in os.walk(input_dir):
|
|
# Skip hidden directories
|
|
dirnames[:] = [d for d in dirnames if not d.startswith(".")]
|
|
|
|
for filename in filenames:
|
|
if count >= max_count:
|
|
break
|
|
|
|
if filename.endswith(".emlx"):
|
|
filepath = os.path.join(dirpath, filename)
|
|
try:
|
|
# Read the .emlx file
|
|
with open(filepath, encoding="utf-8", errors="ignore") as f:
|
|
content = f.read()
|
|
|
|
# .emlx files have a length prefix followed by the email content
|
|
# The first line contains the length, followed by the email
|
|
lines = content.split("\n", 1)
|
|
if len(lines) >= 2:
|
|
email_content = lines[1]
|
|
|
|
# Parse the email using Python's email module
|
|
try:
|
|
msg = email.message_from_string(email_content)
|
|
|
|
# Extract email metadata
|
|
subject = msg.get("Subject", "No Subject")
|
|
from_addr = msg.get("From", "Unknown")
|
|
to_addr = msg.get("To", "Unknown")
|
|
date = msg.get("Date", "Unknown")
|
|
|
|
# Extract email body
|
|
body = ""
|
|
if msg.is_multipart():
|
|
for part in msg.walk():
|
|
if part.get_content_type() == "text/plain":
|
|
body = part.get_payload(decode=True).decode(
|
|
"utf-8", errors="ignore"
|
|
)
|
|
break
|
|
else:
|
|
body = msg.get_payload(decode=True).decode(
|
|
"utf-8", errors="ignore"
|
|
)
|
|
|
|
# Create document content with metadata embedded in text
|
|
doc_content = f"""
|
|
From: {from_addr}
|
|
To: {to_addr}
|
|
Subject: {subject}
|
|
Date: {date}
|
|
|
|
{body}
|
|
"""
|
|
|
|
# Create minimal metadata (only essential info)
|
|
metadata = {
|
|
"subject": subject[:50], # Truncate subject
|
|
"from": from_addr[:30], # Truncate from
|
|
"date": date[:20], # Truncate date
|
|
"filename": filename, # Keep filename
|
|
}
|
|
|
|
doc = Document(text=doc_content, metadata=metadata)
|
|
docs.append(doc)
|
|
count += 1
|
|
|
|
except Exception as e:
|
|
print(f"Error parsing email from {filepath}: {e}")
|
|
continue
|
|
|
|
except Exception as e:
|
|
print(f"Error reading file {filepath}: {e}")
|
|
continue
|
|
|
|
print(f"Loaded {len(docs)} email documents")
|
|
return docs
|
|
|
|
|
|
def create_and_save_index(
|
|
mail_path: str, save_dir: str = "mail_index_small", max_count: int = 1000
|
|
):
|
|
"""
|
|
Create the index from mail data and save it to disk.
|
|
|
|
Args:
|
|
mail_path: Path to the mail directory
|
|
save_dir: Directory to save the index
|
|
max_count: Maximum number of emails to process
|
|
"""
|
|
print("Creating index from mail data with small chunks...")
|
|
|
|
# Load documents
|
|
documents = EmlxReader().load_data(mail_path, max_count=max_count)
|
|
|
|
if not documents:
|
|
print("No documents loaded. Exiting.")
|
|
return None
|
|
|
|
# Create text splitter with small chunk size
|
|
text_splitter = SentenceSplitter(chunk_size=512, chunk_overlap=50)
|
|
|
|
# Create index
|
|
index = VectorStoreIndex.from_documents(documents, transformations=[text_splitter])
|
|
|
|
# Save the index
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
index.storage_context.persist(persist_dir=save_dir)
|
|
print(f"Index saved to {save_dir}")
|
|
|
|
return index
|
|
|
|
|
|
def load_index(save_dir: str = "mail_index_small"):
|
|
"""
|
|
Load the saved index from disk.
|
|
|
|
Args:
|
|
save_dir: Directory where the index is saved
|
|
|
|
Returns:
|
|
Loaded index or None if loading fails
|
|
"""
|
|
try:
|
|
# Load storage context
|
|
storage_context = StorageContext.from_defaults(persist_dir=save_dir)
|
|
|
|
# Load index
|
|
index = VectorStoreIndex.from_vector_store(
|
|
storage_context.vector_store, storage_context=storage_context
|
|
)
|
|
|
|
print(f"Index loaded from {save_dir}")
|
|
return index
|
|
|
|
except Exception as e:
|
|
print(f"Error loading index: {e}")
|
|
return None
|
|
|
|
|
|
def query_index(index, query: str):
|
|
"""
|
|
Query the loaded index.
|
|
|
|
Args:
|
|
index: The loaded index
|
|
query: The query string
|
|
"""
|
|
if index is None:
|
|
print("No index available for querying.")
|
|
return
|
|
|
|
query_engine = index.as_query_engine()
|
|
response = query_engine.query(query)
|
|
print(f"Query: {query}")
|
|
print(f"Response: {response}")
|
|
|
|
|
|
def main():
|
|
mail_path = "/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data/9/Messages"
|
|
save_dir = "mail_index_small"
|
|
|
|
# Check if index already exists
|
|
if os.path.exists(save_dir) and os.path.exists(os.path.join(save_dir, "vector_store.json")):
|
|
print("Loading existing index...")
|
|
index = load_index(save_dir)
|
|
else:
|
|
print("Creating new index...")
|
|
index = create_and_save_index(mail_path, save_dir, max_count=1000)
|
|
|
|
if index:
|
|
# Example queries
|
|
queries = [
|
|
"Hows Berkeley Graduate Student Instructor",
|
|
"What emails mention GSR appointments?",
|
|
"Find emails about deadlines",
|
|
]
|
|
|
|
for query in queries:
|
|
print("\n" + "=" * 50)
|
|
query_index(index, query)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|