Files
LEANN/apps/base_rag_example.py
Aakash Suresh ab251ab751 Fix/twitter bookmarks anchor link (#143)
* fix: Fix Twitter bookmarks anchor link

- Convert Twitter Bookmarks from collapsible details to proper header
- Update internal link to match new anchor format
- Ensures external links to #twitter-bookmarks-your-personal-tweet-library work correctly

Fixes broken link: https://github.com/yichuan-w/LEANN?tab=readme-ov-file#twitter-bookmarks-your-personal-tweet-library

* fix: Fix Slack messages anchor link as well

- Convert Slack Messages from collapsible details to proper header
- Update internal link to match new anchor format
- Ensures external links to #slack-messages-search-your-team-conversations work correctly

Both Twitter and Slack MCP sections now have reliable anchor links.

* fix: Point Slack and Twitter links to main MCP section

- Both Slack and Twitter are subsections under MCP Integration
- Links should point to #mcp-integration-rag-on-live-data-from-any-platform
- Users will land on the MCP section and can find both Slack and Twitter subsections there

This matches the actual document structure where Slack and Twitter are under the MCP Integration section.

* Improve Slack MCP integration with retry logic and comprehensive setup guide

- Add retry mechanism with exponential backoff for cache sync issues
- Handle 'users cache is not ready yet' errors gracefully
- Add max-retries and retry-delay CLI arguments for better control
- Create comprehensive Slack setup guide with troubleshooting
- Update README with link to detailed setup guide
- Improve error messages and user experience

* Fix trailing whitespace in slack setup guide

Pre-commit hooks formatting fixes

* Add comprehensive Slack setup guide with success screenshot

- Create detailed setup guide with step-by-step instructions
- Add troubleshooting section for common issues like cache sync errors
- Include real terminal output example from successful integration
- Add screenshot showing VS Code interface with Slack channel data
- Remove excessive emojis for more professional documentation
- Document retry logic improvements and CLI arguments

* Fix formatting issues in Slack setup guide

- Remove trailing whitespace
- Fix end of file formatting
- Pre-commit hooks formatting fixes

* Add real RAG example showing intelligent Slack query functionality

- Add detailed example of asking 'What is LEANN about?'
- Show retrieved messages from Slack channels
- Demonstrate intelligent answer generation based on context
- Add command example for running real RAG queries
- Explain the 4-step process: retrieve, index, generate, cite

* Update Slack setup guide with bot invitation requirements

- Add important section about inviting bot to channels before RAG queries
- Explain the 'not_in_channel' errors and their meaning
- Provide clear steps for bot invitation process
- Document realistic scenario where bot needs explicit channel access
- Update documentation to be more professional and less cursor-style

* Docs: add real RAG example for Sky Lab #random

- Embed screenshot videos/rag-sky-random.png
- Add step-by-step commands and notes
- Include helper test script tests/test_channel_by_id_or_name.py
- Redact example tokens from docs

* Docs/CI: fix broken image paths and ruff lint\n\n- Move screenshot to docs/videos and update references\n- Remove obsolete rag-query-results image\n- Rename variable to satisfy ruff

* Docs: fix image path for lychee (use videos/ relative under docs/)

* Docs: finalize Slack setup guide with Sky random RAG example and image path fixes\n\n- Redact example tokens from docs

* Fix Slack MCP integration and update documentation

- Fix SlackMCPReader to use conversations_history instead of channels_list
- Add fallback imports for leann.interactive_utils and leann.settings
- Update slack-setup-guide.md with real screenshots and improved text
- Remove old screenshot files

* Add Slack integration screenshots to docs/videos

- Add slack_integration.png showing RAG query results
- Add slack_integration_2.png showing additional demo functionality
- Fixes lychee link checker errors for missing image files

* Update Slack integration screenshot with latest changes

* Remove test_channel_by_id_or_name.py

- Clean up temporary test file that was used for debugging
- Keep only the main slack_rag.py application for production use

* Update Slack RAG example to show LEANN announcement retrieval

- Change query from 'PUBPOL 290' to 'What is LEANN about?' for more challenging retrieval
- Update command to use python -m apps.slack_rag instead of test script
- Add expected response showing Yichuan Wang's LEANN announcement message
- Emphasize this demonstrates ability to find specific announcements in conversation history
- Update description to highlight challenging query capabilities

* Update Slack RAG integration with improved CSV parsing and new screenshots

- Fixed CSV message parsing in slack_mcp_reader.py to properly handle individual messages
- Updated slack_rag.py to filter empty channel strings
- Enhanced slack-setup-guide.md with two new query examples:
  - Advisor Models query: 'train black-box models to adopt to your personal data'
  - Barbarians at the Gate query: 'AI-driven research systems ADRS'
- Replaced old screenshots with four new ones showing both query examples
- Updated documentation to use User OAuth Token (xoxp-) instead of Bot Token (xoxb-)
- Added proper command examples with --no-concatenate-conversations and --force-rebuild flags

* Update Slack RAG documentation with Ollama integration and new screenshots

- Updated slack-setup-guide.md with comprehensive Ollama setup instructions
- Added 6 new screenshots showing complete RAG workflow:
  - Command setup, search results, and LLM responses for both queries
- Removed simulated LLM references, now uses real Ollama with llama3.2:1b
- Enhanced documentation with step-by-step Ollama installation
- Updated troubleshooting checklist to include Ollama-specific checks
- Fixed command syntax and added proper Ollama configuration
- Demonstrates working Slack RAG with real AI-generated responses

* Remove Key Features section from Slack RAG examples

- Simplified documentation by removing the bullet point list
- Keeps the focus on the actual examples and screenshots
2025-10-19 11:47:29 -07:00

408 lines
15 KiB
Python

"""
Base class for unified RAG examples interface.
Provides common parameters and functionality for all RAG examples.
"""
import argparse
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Any
import dotenv
from leann.api import LeannBuilder, LeannChat
# Optional import: older PyPI builds may not include interactive_utils
try:
from leann.interactive_utils import create_rag_session
except ImportError:
def create_rag_session(app_name: str, data_description: str):
class _SimpleSession:
def run_interactive_loop(self, handler):
print(f"Interactive session for {app_name}: {data_description}")
print("Interactive mode not available in this build")
return _SimpleSession()
from leann.registry import register_project_directory
# Optional import: older PyPI builds may not include settings
try:
from leann.settings import resolve_ollama_host, resolve_openai_api_key, resolve_openai_base_url
except ImportError:
# Minimal fallbacks if settings helpers are unavailable
import os
def resolve_ollama_host(value: str | None) -> str | None:
return value or os.getenv("LEANN_OLLAMA_HOST") or os.getenv("OLLAMA_HOST")
def resolve_openai_api_key(value: str | None) -> str | None:
return value or os.getenv("OPENAI_API_KEY")
def resolve_openai_base_url(value: str | None) -> str | None:
return value or os.getenv("OPENAI_BASE_URL")
dotenv.load_dotenv()
class BaseRAGExample(ABC):
"""Base class for all RAG examples with unified interface."""
def __init__(
self,
name: str,
description: str,
default_index_name: str,
):
self.name = name
self.description = description
self.default_index_name = default_index_name
self.parser = self._create_parser()
def _create_parser(self) -> argparse.ArgumentParser:
"""Create argument parser with common parameters."""
parser = argparse.ArgumentParser(
description=self.description, formatter_class=argparse.RawDescriptionHelpFormatter
)
# Core parameters (all examples share these)
core_group = parser.add_argument_group("Core Parameters")
core_group.add_argument(
"--index-dir",
type=str,
default=f"./{self.default_index_name}",
help=f"Directory to store the index (default: ./{self.default_index_name})",
)
core_group.add_argument(
"--query",
type=str,
default=None,
help="Query to run (if not provided, will run in interactive mode)",
)
# Allow subclasses to override default max_items
max_items_default = getattr(self, "max_items_default", -1)
core_group.add_argument(
"--max-items",
type=int,
default=max_items_default,
help="Maximum number of items to process -1 for all, means index all documents, and you should set it to a reasonable number if you have a large dataset and try at the first time)",
)
core_group.add_argument(
"--force-rebuild", action="store_true", help="Force rebuild index even if it exists"
)
# Embedding parameters
embedding_group = parser.add_argument_group("Embedding Parameters")
# Allow subclasses to override default embedding_model
embedding_model_default = getattr(self, "embedding_model_default", "facebook/contriever")
embedding_group.add_argument(
"--embedding-model",
type=str,
default=embedding_model_default,
help=f"Embedding model to use (default: {embedding_model_default}), we provide facebook/contriever, text-embedding-3-small,mlx-community/Qwen3-Embedding-0.6B-8bit or nomic-embed-text",
)
embedding_group.add_argument(
"--embedding-mode",
type=str,
default="sentence-transformers",
choices=["sentence-transformers", "openai", "mlx", "ollama"],
help="Embedding backend mode (default: sentence-transformers), we provide sentence-transformers, openai, mlx, or ollama",
)
embedding_group.add_argument(
"--embedding-host",
type=str,
default=None,
help="Override Ollama-compatible embedding host",
)
embedding_group.add_argument(
"--embedding-api-base",
type=str,
default=None,
help="Base URL for OpenAI-compatible embedding services",
)
embedding_group.add_argument(
"--embedding-api-key",
type=str,
default=None,
help="API key for embedding service (defaults to OPENAI_API_KEY)",
)
# LLM parameters
llm_group = parser.add_argument_group("LLM Parameters")
llm_group.add_argument(
"--llm",
type=str,
default="openai",
choices=["openai", "ollama", "hf", "simulated"],
help="LLM backend: openai, ollama, or hf (default: openai)",
)
llm_group.add_argument(
"--llm-model",
type=str,
default=None,
help="Model name (default: gpt-4o) e.g., gpt-4o-mini, llama3.2:1b, Qwen/Qwen2.5-1.5B-Instruct",
)
llm_group.add_argument(
"--llm-host",
type=str,
default=None,
help="Host for Ollama-compatible APIs (defaults to LEANN_OLLAMA_HOST/OLLAMA_HOST)",
)
llm_group.add_argument(
"--thinking-budget",
type=str,
choices=["low", "medium", "high"],
default=None,
help="Thinking budget for reasoning models (low/medium/high). Supported by GPT-Oss:20b and other reasoning models.",
)
llm_group.add_argument(
"--llm-api-base",
type=str,
default=None,
help="Base URL for OpenAI-compatible APIs",
)
llm_group.add_argument(
"--llm-api-key",
type=str,
default=None,
help="API key for OpenAI-compatible APIs (defaults to OPENAI_API_KEY)",
)
# AST Chunking parameters
ast_group = parser.add_argument_group("AST Chunking Parameters")
ast_group.add_argument(
"--use-ast-chunking",
action="store_true",
help="Enable AST-aware chunking for code files (requires astchunk)",
)
ast_group.add_argument(
"--ast-chunk-size",
type=int,
default=512,
help="Maximum characters per AST chunk (default: 512)",
)
ast_group.add_argument(
"--ast-chunk-overlap",
type=int,
default=64,
help="Overlap between AST chunks (default: 64)",
)
ast_group.add_argument(
"--code-file-extensions",
nargs="+",
default=None,
help="Additional code file extensions to process with AST chunking (e.g., .py .java .cs .ts)",
)
ast_group.add_argument(
"--ast-fallback-traditional",
action="store_true",
default=True,
help="Fall back to traditional chunking if AST chunking fails (default: True)",
)
# Search parameters
search_group = parser.add_argument_group("Search Parameters")
search_group.add_argument(
"--top-k", type=int, default=20, help="Number of results to retrieve (default: 20)"
)
search_group.add_argument(
"--search-complexity",
type=int,
default=32,
help="Search complexity for graph traversal (default: 64)",
)
# Index building parameters
index_group = parser.add_argument_group("Index Building Parameters")
index_group.add_argument(
"--backend-name",
type=str,
default="hnsw",
choices=["hnsw", "diskann"],
help="Backend to use for index (default: hnsw)",
)
index_group.add_argument(
"--graph-degree",
type=int,
default=32,
help="Graph degree for index construction (default: 32)",
)
index_group.add_argument(
"--build-complexity",
type=int,
default=64,
help="Build complexity for index construction (default: 64)",
)
index_group.add_argument(
"--no-compact",
action="store_true",
help="Disable compact index storage",
)
index_group.add_argument(
"--no-recompute",
action="store_true",
help="Disable embedding recomputation",
)
# Add source-specific parameters
self._add_specific_arguments(parser)
return parser
@abstractmethod
def _add_specific_arguments(self, parser: argparse.ArgumentParser):
"""Add source-specific arguments. Override in subclasses."""
pass
@abstractmethod
async def load_data(self, args) -> list[str]:
"""Load data from the source. Returns list of text chunks."""
pass
def get_llm_config(self, args) -> dict[str, Any]:
"""Get LLM configuration based on arguments."""
config = {"type": args.llm}
if args.llm == "openai":
config["model"] = args.llm_model or "gpt-4o"
config["base_url"] = resolve_openai_base_url(args.llm_api_base)
resolved_key = resolve_openai_api_key(args.llm_api_key)
if resolved_key:
config["api_key"] = resolved_key
elif args.llm == "ollama":
config["model"] = args.llm_model or "llama3.2:1b"
config["host"] = resolve_ollama_host(args.llm_host)
elif args.llm == "hf":
config["model"] = args.llm_model or "Qwen/Qwen2.5-1.5B-Instruct"
elif args.llm == "simulated":
# Simulated LLM doesn't need additional configuration
pass
return config
async def build_index(self, args, texts: list[str]) -> str:
"""Build LEANN index from texts."""
index_path = str(Path(args.index_dir) / f"{self.default_index_name}.leann")
print(f"\n[Building Index] Creating {self.name} index...")
print(f"Total text chunks: {len(texts)}")
embedding_options: dict[str, Any] = {}
if args.embedding_mode == "ollama":
embedding_options["host"] = resolve_ollama_host(args.embedding_host)
elif args.embedding_mode == "openai":
embedding_options["base_url"] = resolve_openai_base_url(args.embedding_api_base)
resolved_embedding_key = resolve_openai_api_key(args.embedding_api_key)
if resolved_embedding_key:
embedding_options["api_key"] = resolved_embedding_key
builder = LeannBuilder(
backend_name=args.backend_name,
embedding_model=args.embedding_model,
embedding_mode=args.embedding_mode,
embedding_options=embedding_options or None,
graph_degree=args.graph_degree,
complexity=args.build_complexity,
is_compact=not args.no_compact,
is_recompute=not args.no_recompute,
num_threads=1, # Force single-threaded mode
)
# Add texts in batches for better progress tracking
batch_size = 1000
for i in range(0, len(texts), batch_size):
batch = texts[i : i + batch_size]
for text in batch:
builder.add_text(text)
print(f"Added {min(i + batch_size, len(texts))}/{len(texts)} texts...")
print("Building index structure...")
builder.build_index(index_path)
print(f"Index saved to: {index_path}")
# Register project directory so leann list can discover this index
# The index is saved as args.index_dir/index_name.leann
# We want to register the current working directory where the app is run
register_project_directory(Path.cwd())
return index_path
async def run_interactive_chat(self, args, index_path: str):
"""Run interactive chat with the index."""
chat = LeannChat(
index_path,
llm_config=self.get_llm_config(args),
system_prompt=f"You are a helpful assistant that answers questions about {self.name} data.",
complexity=args.search_complexity,
)
# Create interactive session
session = create_rag_session(
app_name=self.name.lower().replace(" ", "_"), data_description=self.name
)
def handle_query(query: str):
# Prepare LLM kwargs with thinking budget if specified
llm_kwargs = {}
if hasattr(args, "thinking_budget") and args.thinking_budget:
llm_kwargs["thinking_budget"] = args.thinking_budget
response = chat.ask(
query,
top_k=args.top_k,
complexity=args.search_complexity,
llm_kwargs=llm_kwargs,
)
print(f"\nAssistant: {response}\n")
session.run_interactive_loop(handle_query)
async def run_single_query(self, args, index_path: str, query: str):
"""Run a single query against the index."""
chat = LeannChat(
index_path,
llm_config=self.get_llm_config(args),
complexity=args.search_complexity,
)
print(f"\n[Query]: \033[36m{query}\033[0m")
# Prepare LLM kwargs with thinking budget if specified
llm_kwargs = {}
if hasattr(args, "thinking_budget") and args.thinking_budget:
llm_kwargs["thinking_budget"] = args.thinking_budget
response = chat.ask(
query, top_k=args.top_k, complexity=args.search_complexity, llm_kwargs=llm_kwargs
)
print(f"\n[Response]: \033[36m{response}\033[0m")
async def run(self):
"""Main entry point for the example."""
args = self.parser.parse_args()
# Check if index exists
index_path = str(Path(args.index_dir) / f"{self.default_index_name}.leann")
index_exists = Path(args.index_dir).exists()
if not index_exists or args.force_rebuild:
# Load data and build index
print(f"\n{'Rebuilding' if index_exists else 'Building'} index...")
texts = await self.load_data(args)
if not texts:
print("No data found to index!")
return
index_path = await self.build_index(args, texts)
else:
print(f"\nUsing existing index in {args.index_dir}")
# Run query or interactive mode
if args.query:
await self.run_single_query(args, index_path, args.query)
else:
await self.run_interactive_chat(args, index_path)