Files
LEANN/benchmarks/enron_emails/evaluate_enron_emails.py
2025-08-24 23:06:57 -07:00

510 lines
20 KiB
Python

"""
Enron Emails Benchmark Evaluation - Retrieval Recall@3 (Stages 2/3/4)
Follows the style of FinanceBench/LAION: Stage 2 recall vs FAISS baseline,
Stage 3 complexity sweep to target recall, Stage 4 index comparison.
On errors, fail fast without fallbacks.
"""
import argparse
import json
import os
import pickle
import numpy as np
from leann import LeannBuilder, LeannSearcher
from leann_backend_hnsw import faiss
class RecallEvaluator:
"""Stage 2: Evaluate Recall@3 (LEANN vs FAISS)"""
def __init__(self, index_path: str, baseline_dir: str):
self.index_path = index_path
self.baseline_dir = baseline_dir
self.searcher = LeannSearcher(index_path)
baseline_index_path = os.path.join(baseline_dir, "faiss_flat.index")
metadata_path = os.path.join(baseline_dir, "metadata.pkl")
self.faiss_index = faiss.read_index(baseline_index_path)
with open(metadata_path, "rb") as f:
self.passage_ids = pickle.load(f)
print(f"📚 Loaded FAISS flat baseline with {self.faiss_index.ntotal} vectors")
# No fallbacks here; if embedding server is needed but fails, the caller will see the error.
def evaluate_recall_at_3(
self, queries: list[str], complexity: int = 64, recompute_embeddings: bool = True
) -> float:
"""Evaluate recall@3 using FAISS Flat as ground truth"""
from leann.api import compute_embeddings
recompute_str = "with recompute" if recompute_embeddings else "no recompute"
print(f"🔍 Evaluating recall@3 with complexity={complexity} ({recompute_str})...")
total_recall = 0.0
for i, query in enumerate(queries):
# Compute query embedding with the same model/mode as the index
q_emb = compute_embeddings(
[query],
self.searcher.embedding_model,
mode=self.searcher.embedding_mode,
use_server=False,
).astype(np.float32)
# Search FAISS Flat ground truth
n = q_emb.shape[0]
k = 3
distances = np.zeros((n, k), dtype=np.float32)
labels = np.zeros((n, k), dtype=np.int64)
self.faiss_index.search(
n,
faiss.swig_ptr(q_emb),
k,
faiss.swig_ptr(distances),
faiss.swig_ptr(labels),
)
baseline_ids = {self.passage_ids[idx] for idx in labels[0]}
# Search with LEANN (may require embedding server depending on index configuration)
results = self.searcher.search(
query,
top_k=3,
complexity=complexity,
recompute_embeddings=recompute_embeddings,
)
test_ids = {r.id for r in results}
intersection = test_ids.intersection(baseline_ids)
recall = len(intersection) / 3.0
total_recall += recall
if i < 3:
print(f" Q{i + 1}: '{query[:60]}...' -> Recall@3: {recall:.3f}")
print(f" FAISS: {list(baseline_ids)}")
print(f" LEANN: {list(test_ids)}")
print(f" ∩: {list(intersection)}")
avg = total_recall / max(1, len(queries))
print(f"📊 Average Recall@3: {avg:.3f} ({avg * 100:.1f}%)")
return avg
def cleanup(self):
if hasattr(self, "searcher"):
self.searcher.cleanup()
class EnronEvaluator:
def __init__(self, index_path: str):
self.index_path = index_path
self.searcher = LeannSearcher(index_path)
def load_queries(self, queries_file: str) -> list[str]:
queries: list[str] = []
with open(queries_file, encoding="utf-8") as f:
for line in f:
if not line.strip():
continue
data = json.loads(line)
if "query" in data:
queries.append(data["query"])
print(f"📊 Loaded {len(queries)} queries from {queries_file}")
return queries
def cleanup(self):
if self.searcher:
self.searcher.cleanup()
def analyze_index_sizes(self) -> dict:
"""Analyze index sizes (.index only), similar to LAION bench."""
from pathlib import Path
print("📏 Analyzing index sizes (.index only)...")
index_path = Path(self.index_path)
index_dir = index_path.parent
index_name = index_path.stem
sizes: dict[str, float] = {}
index_file = index_dir / f"{index_name}.index"
meta_file = index_dir / f"{index_path.name}.meta.json"
passages_file = index_dir / f"{index_path.name}.passages.jsonl"
passages_idx_file = index_dir / f"{index_path.name}.passages.idx"
sizes["index_only_mb"] = (
index_file.stat().st_size / (1024 * 1024) if index_file.exists() else 0.0
)
sizes["metadata_mb"] = (
meta_file.stat().st_size / (1024 * 1024) if meta_file.exists() else 0.0
)
sizes["passages_text_mb"] = (
passages_file.stat().st_size / (1024 * 1024) if passages_file.exists() else 0.0
)
sizes["passages_index_mb"] = (
passages_idx_file.stat().st_size / (1024 * 1024) if passages_idx_file.exists() else 0.0
)
print(f" 📁 .index size: {sizes['index_only_mb']:.1f} MB")
return sizes
def create_non_compact_index_for_comparison(self, non_compact_index_path: str) -> dict:
"""Create a non-compact index for comparison using current passages and embeddings."""
from pathlib import Path
current_index_path = Path(self.index_path)
current_index_dir = current_index_path.parent
current_index_name = current_index_path.name
# Read metadata to get passage source and embedding model
meta_path = current_index_dir / f"{current_index_name}.meta.json"
with open(meta_path, encoding="utf-8") as f:
meta = json.load(f)
passage_source = meta["passage_sources"][0]
passage_file = passage_source["path"]
# Convert relative path to absolute
if not Path(passage_file).is_absolute():
passage_file = current_index_dir / Path(passage_file).name
# Load all passages and ids
ids: list[str] = []
texts: list[str] = []
with open(passage_file, encoding="utf-8") as f:
for line in f:
if line.strip():
data = json.loads(line)
ids.append(str(data["id"]))
texts.append(data["text"])
# Compute embeddings using the same method as LEANN
from leann.api import compute_embeddings
embeddings = compute_embeddings(
texts,
meta["embedding_model"],
mode=meta.get("embedding_mode", "sentence-transformers"),
use_server=False,
).astype(np.float32)
# Build non-compact index with same passages and embeddings
builder = LeannBuilder(
backend_name="hnsw",
embedding_model=meta["embedding_model"],
embedding_mode=meta.get("embedding_mode", "sentence-transformers"),
is_recompute=False,
is_compact=False,
**{
k: v
for k, v in meta.get("backend_kwargs", {}).items()
if k not in ["is_recompute", "is_compact"]
},
)
# Persist a pickle for build_index_from_embeddings
pkl_path = current_index_dir / f"{Path(non_compact_index_path).stem}_embeddings.pkl"
with open(pkl_path, "wb") as pf:
pickle.dump((ids, embeddings), pf)
print(
f"🔨 Building non-compact index at {non_compact_index_path} from precomputed embeddings..."
)
builder.build_index_from_embeddings(non_compact_index_path, str(pkl_path))
# Analyze the non-compact index size
temp_evaluator = EnronEvaluator(non_compact_index_path)
non_compact_sizes = temp_evaluator.analyze_index_sizes()
non_compact_sizes["index_type"] = "non_compact"
return non_compact_sizes
def compare_index_performance(
self, non_compact_path: str, compact_path: str, test_queries: list[str], complexity: int
) -> dict:
"""Compare search speed for non-compact vs compact indexes."""
import time
results: dict = {
"non_compact": {"search_times": []},
"compact": {"search_times": []},
"avg_search_times": {},
"speed_ratio": 0.0,
}
print("⚡ Comparing search performance between indexes...")
# Non-compact (no recompute)
print(" 🔍 Testing non-compact index (no recompute)...")
non_compact_searcher = LeannSearcher(non_compact_path)
for q in test_queries:
t0 = time.time()
_ = non_compact_searcher.search(
q, top_k=3, complexity=complexity, recompute_embeddings=False
)
results["non_compact"]["search_times"].append(time.time() - t0)
# Compact (with recompute). Fail fast if it cannot run.
print(" 🔍 Testing compact index (with recompute)...")
compact_searcher = LeannSearcher(compact_path)
for q in test_queries:
t0 = time.time()
_ = compact_searcher.search(
q, top_k=3, complexity=complexity, recompute_embeddings=True
)
results["compact"]["search_times"].append(time.time() - t0)
compact_searcher.cleanup()
if results["non_compact"]["search_times"]:
results["avg_search_times"]["non_compact"] = sum(
results["non_compact"]["search_times"]
) / len(results["non_compact"]["search_times"])
if results["compact"]["search_times"]:
results["avg_search_times"]["compact"] = sum(results["compact"]["search_times"]) / len(
results["compact"]["search_times"]
)
if results["avg_search_times"].get("compact", 0) > 0:
results["speed_ratio"] = (
results["avg_search_times"]["non_compact"] / results["avg_search_times"]["compact"]
)
else:
results["speed_ratio"] = 0.0
non_compact_searcher.cleanup()
return results
def evaluate_complexity(
self,
recall_eval: "RecallEvaluator",
queries: list[str],
target: float = 0.90,
c_min: int = 8,
c_max: int = 256,
max_iters: int = 10,
recompute: bool = False,
) -> dict:
"""Binary search minimal complexity achieving target recall (monotonic assumption)."""
def round_c(x: int) -> int:
# snap to multiple of 8 like other benches typically do
return max(1, int((x + 7) // 8) * 8)
metrics: list[dict] = []
lo = round_c(c_min)
hi = round_c(c_max)
print(
f"🧪 Binary search complexity in [{lo}, {hi}] for target Recall@3>={int(target * 100)}%..."
)
# Ensure upper bound can reach target; expand if needed (up to a cap)
r_lo = recall_eval.evaluate_recall_at_3(
queries, complexity=lo, recompute_embeddings=recompute
)
metrics.append({"complexity": lo, "recall_at_3": r_lo})
r_hi = recall_eval.evaluate_recall_at_3(
queries, complexity=hi, recompute_embeddings=recompute
)
metrics.append({"complexity": hi, "recall_at_3": r_hi})
cap = 1024
while r_hi < target and hi < cap:
lo = hi
r_lo = r_hi
hi = round_c(hi * 2)
r_hi = recall_eval.evaluate_recall_at_3(
queries, complexity=hi, recompute_embeddings=recompute
)
metrics.append({"complexity": hi, "recall_at_3": r_hi})
if r_hi < target:
print(f"⚠️ Max complexity {hi} did not reach target recall {target:.2f}.")
print("📈 Observations:")
for m in metrics:
print(f" C={m['complexity']:>4} -> Recall@3={m['recall_at_3'] * 100:.1f}%")
return {"metrics": metrics, "best_complexity": None, "target_recall": target}
# Binary search within [lo, hi]
best = hi
iters = 0
while lo < hi and iters < max_iters:
mid = round_c((lo + hi) // 2)
r_mid = recall_eval.evaluate_recall_at_3(
queries, complexity=mid, recompute_embeddings=recompute
)
metrics.append({"complexity": mid, "recall_at_3": r_mid})
if r_mid >= target:
best = mid
hi = mid
else:
lo = mid + 8 # move past mid, respecting multiple-of-8 step
iters += 1
print("📈 Binary search results (sampled points):")
# Print unique complexity entries ordered by complexity
for m in sorted(
{m["complexity"]: m for m in metrics}.values(), key=lambda x: x["complexity"]
):
print(f" C={m['complexity']:>4} -> Recall@3={m['recall_at_3'] * 100:.1f}%")
print(f"✅ Minimal complexity achieving {int(target * 100)}% recall: {best}")
return {"metrics": metrics, "best_complexity": best, "target_recall": target}
def main():
parser = argparse.ArgumentParser(description="Enron Emails Benchmark Evaluation")
parser.add_argument("--index", required=True, help="Path to LEANN index")
parser.add_argument(
"--queries", default="data/evaluation_queries.jsonl", help="Path to evaluation queries"
)
parser.add_argument(
"--stage",
choices=["2", "3", "4", "all"],
default="all",
help="Which stage to run (2=recall, 3=complexity, 4=index comparison)",
)
parser.add_argument("--complexity", type=int, default=None, help="LEANN search complexity")
parser.add_argument("--baseline-dir", default="baseline", help="Baseline output directory")
parser.add_argument(
"--max-queries", type=int, help="Limit number of queries to evaluate", default=1000
)
parser.add_argument(
"--target-recall", type=float, default=0.90, help="Target Recall@3 for Stage 3"
)
parser.add_argument("--output", help="Save results to JSON file")
args = parser.parse_args()
# Resolve queries file: if default path not found, fall back to index's directory
if not os.path.exists(args.queries):
from pathlib import Path
idx_dir = Path(args.index).parent
fallback_q = idx_dir / "evaluation_queries.jsonl"
if fallback_q.exists():
args.queries = str(fallback_q)
baseline_index_path = os.path.join(args.baseline_dir, "faiss_flat.index")
if not os.path.exists(baseline_index_path):
print(f"❌ FAISS baseline not found at {baseline_index_path}")
print("💡 Please run setup_enron_emails.py first to build the baseline")
raise SystemExit(1)
results_out: dict = {}
if args.stage in ("2", "all"):
print("🚀 Starting Stage 2: Recall@3 evaluation")
evaluator = RecallEvaluator(args.index, args.baseline_dir)
enron_eval = EnronEvaluator(args.index)
queries = enron_eval.load_queries(args.queries)
queries = queries[:10]
print(f"🧪 Using first {len(queries)} queries")
complexity = args.complexity or 64
r = evaluator.evaluate_recall_at_3(queries, complexity)
results_out["stage2"] = {"complexity": complexity, "recall_at_3": r}
evaluator.cleanup()
enron_eval.cleanup()
print("✅ Stage 2 completed!\n")
if args.stage in ("3", "all"):
print("🚀 Starting Stage 3: Binary search for target recall (no recompute)")
enron_eval = EnronEvaluator(args.index)
queries = enron_eval.load_queries(args.queries)
queries = queries[: args.max_queries]
print(f"🧪 Using first {len(queries)} queries")
# Build non-compact index for fast binary search (recompute_embeddings=False)
from pathlib import Path
index_path = Path(args.index)
non_compact_index_path = str(index_path.parent / f"{index_path.stem}_noncompact.leann")
enron_eval.create_non_compact_index_for_comparison(non_compact_index_path)
# Use non-compact evaluator for binary search with recompute=False
evaluator_nc = RecallEvaluator(non_compact_index_path, args.baseline_dir)
sweep = enron_eval.evaluate_complexity(
evaluator_nc, queries, target=args.target_recall, recompute=False
)
results_out["stage3"] = sweep
# Persist default stage 3 results near the index for Stage 4 auto-pickup
from pathlib import Path
default_stage3_path = Path(args.index).parent / "enron_stage3_results.json"
with open(default_stage3_path, "w", encoding="utf-8") as f:
json.dump({"stage3": sweep}, f, indent=2)
print(f"📝 Saved Stage 3 summary to {default_stage3_path}")
evaluator_nc.cleanup()
enron_eval.cleanup()
print("✅ Stage 3 completed!\n")
if args.stage in ("4", "all"):
print("🚀 Starting Stage 4: Index size + performance comparison")
evaluator = RecallEvaluator(args.index, args.baseline_dir)
enron_eval = EnronEvaluator(args.index)
queries = enron_eval.load_queries(args.queries)
test_q = queries[: min(args.max_queries, len(queries))]
current_sizes = enron_eval.analyze_index_sizes()
# Build non-compact index for comparison (no fallback)
from pathlib import Path
index_path = Path(args.index)
non_compact_path = str(index_path.parent / f"{index_path.stem}_noncompact.leann")
non_compact_sizes = enron_eval.create_non_compact_index_for_comparison(non_compact_path)
nc_eval = EnronEvaluator(non_compact_path)
if (
current_sizes.get("index_only_mb", 0) > 0
and non_compact_sizes.get("index_only_mb", 0) > 0
):
storage_saving_percent = max(
0.0,
100.0 * (1.0 - current_sizes["index_only_mb"] / non_compact_sizes["index_only_mb"]),
)
else:
storage_saving_percent = 0.0
if args.complexity is None:
# Prefer in-session Stage 3 result
if "stage3" in results_out and results_out["stage3"].get("best_complexity") is not None:
complexity = results_out["stage3"]["best_complexity"]
print(f"📥 Using best complexity from Stage 3 in-session: {complexity}")
else:
# Try to load last saved Stage 3 result near index
default_stage3_path = Path(args.index).parent / "enron_stage3_results.json"
if default_stage3_path.exists():
with open(default_stage3_path, encoding="utf-8") as f:
prev = json.load(f)
complexity = prev.get("stage3", {}).get("best_complexity")
if complexity is None:
raise SystemExit("❌ Stage 4: No --complexity and no best_complexity found in saved Stage 3 results")
print(f"📥 Using best complexity from saved Stage 3: {complexity}")
else:
raise SystemExit(
"❌ Stage 4 requires --complexity if Stage 3 hasn't been run. Run stage 3 first or pass --complexity."
)
else:
complexity = args.complexity
comp = enron_eval.compare_index_performance(
non_compact_path, args.index, test_q, complexity=complexity
)
results_out["stage4"] = {
"current_index": current_sizes,
"non_compact_index": non_compact_sizes,
"storage_saving_percent": storage_saving_percent,
"performance_comparison": comp,
}
nc_eval.cleanup()
evaluator.cleanup()
enron_eval.cleanup()
print("✅ Stage 4 completed!\n")
if args.output and results_out:
with open(args.output, "w", encoding="utf-8") as f:
json.dump(results_out, f, indent=2)
print(f"📝 Saved results to {args.output}")
if __name__ == "__main__":
main()