Files
LEANN/packages/leann-core/src/leann/searcher_base.py
2025-07-22 14:26:03 -07:00

200 lines
7.5 KiB
Python

import json
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, Any, Literal, Optional
import numpy as np
from .embedding_server_manager import EmbeddingServerManager
from .interface import LeannBackendSearcherInterface
class BaseSearcher(LeannBackendSearcherInterface, ABC):
"""
Abstract base class for Leann searchers, containing common logic for
loading metadata, managing embedding servers, and handling file paths.
"""
def __init__(self, index_path: str, backend_module_name: str, **kwargs):
"""
Initializes the BaseSearcher.
Args:
index_path: Path to the Leann index file (e.g., '.../my_index.leann').
backend_module_name: The specific embedding server module to use
(e.g., 'leann_backend_hnsw.hnsw_embedding_server').
**kwargs: Additional keyword arguments.
"""
self.index_path = Path(index_path)
self.index_dir = self.index_path.parent
self.meta = kwargs.get("meta", self._load_meta())
if not self.meta:
raise ValueError("Searcher requires metadata from .meta.json.")
self.dimensions = self.meta.get("dimensions")
if not self.dimensions:
raise ValueError("Dimensions not found in Leann metadata.")
self.embedding_model = self.meta.get("embedding_model")
if not self.embedding_model:
print(
"WARNING: embedding_model not found in meta.json. Recompute will fail."
)
self.embedding_mode = self.meta.get("embedding_mode", "sentence-transformers")
self.embedding_server_manager = EmbeddingServerManager(
backend_module_name=backend_module_name,
)
def _load_meta(self) -> Dict[str, Any]:
"""Loads the metadata file associated with the index."""
# This is the corrected logic for finding the meta file.
meta_path = self.index_dir / f"{self.index_path.name}.meta.json"
if not meta_path.exists():
raise FileNotFoundError(f"Leann metadata file not found at {meta_path}")
with open(meta_path, "r", encoding="utf-8") as f:
return json.load(f)
def _ensure_server_running(
self, passages_source_file: str, port: int, **kwargs
) -> int:
"""
Ensures the embedding server is running if recompute is needed.
This is a helper for subclasses.
"""
if not self.embedding_model:
raise ValueError(
"Cannot use recompute mode without 'embedding_model' in meta.json."
)
server_started, actual_port = self.embedding_server_manager.start_server(
port=port,
model_name=self.embedding_model,
embedding_mode=self.embedding_mode,
passages_file=passages_source_file,
distance_metric=kwargs.get("distance_metric"),
enable_warmup=kwargs.get("enable_warmup", False),
)
if not server_started:
raise RuntimeError(
f"Failed to start embedding server on port {actual_port}"
)
return actual_port
def compute_query_embedding(
self,
query: str,
use_server_if_available: bool = True,
zmq_port: int = 5557,
) -> np.ndarray:
"""
Compute embedding for a query string.
Args:
query: The query string to embed
zmq_port: ZMQ port for embedding server
use_server_if_available: Whether to try using embedding server first
Returns:
Query embedding as numpy array
"""
# Try to use embedding server if available and requested
if use_server_if_available:
try:
# TODO: Maybe we can directly use this port here?
# For this internal method, it's ok to assume that the server is running
# on that port?
# Ensure we have a server with passages_file for compatibility
passages_source_file = (
self.index_dir / f"{self.index_path.name}.meta.json"
)
zmq_port = self._ensure_server_running(
str(passages_source_file), zmq_port
)
return self._compute_embedding_via_server([query], zmq_port)[
0:1
] # Return (1, D) shape
except Exception as e:
print(f"⚠️ Embedding server failed: {e}")
print("⏭️ Falling back to direct model loading...")
# Fallback to direct computation
from .embedding_compute import compute_embeddings
embedding_mode = self.meta.get("embedding_mode", "sentence-transformers")
return compute_embeddings([query], self.embedding_model, embedding_mode)
def _compute_embedding_via_server(self, chunks: list, zmq_port: int) -> np.ndarray:
"""Compute embeddings using the ZMQ embedding server."""
import zmq
import msgpack
try:
context = zmq.Context()
socket = context.socket(zmq.REQ)
socket.setsockopt(zmq.RCVTIMEO, 30000) # 30 second timeout
socket.connect(f"tcp://localhost:{zmq_port}")
# Send embedding request
request = chunks
request_bytes = msgpack.packb(request)
socket.send(request_bytes)
# Wait for response
response_bytes = socket.recv()
response = msgpack.unpackb(response_bytes)
socket.close()
context.term()
# Convert response to numpy array
if isinstance(response, list) and len(response) > 0:
return np.array(response, dtype=np.float32)
else:
raise RuntimeError("Invalid response from embedding server")
except Exception as e:
raise RuntimeError(f"Failed to compute embeddings via server: {e}")
@abstractmethod
def search(
self,
query: np.ndarray,
top_k: int,
complexity: int = 64,
beam_width: int = 1,
prune_ratio: float = 0.0,
recompute_embeddings: bool = False,
pruning_strategy: Literal["global", "local", "proportional"] = "global",
zmq_port: Optional[int] = None,
**kwargs,
) -> Dict[str, Any]:
"""
Search for the top_k nearest neighbors of the query vector.
Args:
query: Query vectors (B, D) where B is batch size, D is dimension
top_k: Number of nearest neighbors to return
complexity: Search complexity/candidate list size, higher = more accurate but slower
beam_width: Number of parallel search paths/IO requests per iteration
prune_ratio: Ratio of neighbors to prune via approximate distance (0.0-1.0)
recompute_embeddings: Whether to fetch fresh embeddings from server vs use stored PQ codes
pruning_strategy: PQ candidate selection strategy - "global" (default), "local", or "proportional"
zmq_port: ZMQ port for embedding server communication. Must be provided if recompute_embeddings is True.
**kwargs: Backend-specific parameters (e.g., batch_size, dedup_node_dis, etc.)
Returns:
Dict with 'labels' (list of lists) and 'distances' (ndarray)
"""
pass
def __del__(self):
"""Ensures the embedding server is stopped when the searcher is destroyed."""
if hasattr(self, "embedding_server_manager"):
self.embedding_server_manager.stop_server()