* feat: finance bench * docs: results * chore: ignroe data README * feat: fix financebench * feat: laion, also required idmaps support * style: format * style: format * fix: resolve ruff linting errors - Remove unused variables in benchmark scripts - Rename unused loop variables to follow convention * feat: enron email bench * experiments for running DiskANN & BM25 on Arch 4090 * style: format * chore(ci): remove paru-bin submodule and config to fix checkout --recurse-submodules * docs: data * docs: data updated * fix: as package * fix(ci): only run pre-commit * chore: use http url of astchunk; use group for some dev deps * fix(ci): should checkout modules as well since `uv sync` checks * fix(ci): run with lint only * fix: find links to install wheels available * CI: force local wheels in uv install step * CI: install local wheels via file paths * CI: pick wheels matching current Python tag * CI: handle python tag mismatches for local wheels * CI: use matrix python venv and set macOS deployment target * CI: revert install step to match main * CI: use uv group install with local wheel selection * CI: rely on setup-uv for Python and tighten group install * CI: install build deps with uv python interpreter * CI: use temporary uv venv for build deps * CI: add build venv scripts path for wheel repair
Enron Emails Benchmark
A comprehensive RAG benchmark for evaluating LEANN search and generation on the Enron email corpus. It mirrors the structure and CLI of the existing FinanceBench and LAION benches, using stage-based evaluation with Recall@3 and generation timing.
- Dataset: Enron email CSV (e.g., Kaggle wcukierski/enron-email-dataset) for passages
- Queries: corbt/enron_emails_sample_questions (filtered for realistic questions)
- Metrics: Recall@3 vs FAISS Flat baseline + Generation evaluation with Qwen3-8B
Layout
benchmarks/enron_emails/
- setup_enron_emails.py: Prepare passages, build LEANN index, build FAISS baseline
- evaluate_enron_emails.py: Evaluate retrieval recall (Stages 2-5) + generation with Qwen3-8B
- data/: Generated passages, queries, embeddings-related files
- baseline/: FAISS Flat baseline files
- llm_utils.py: LLM utilities for Qwen3-8B generation (in parent directory)
Quickstart
- Prepare the data and index
cd benchmarks/enron_emails python setup_enron_emails.py --data-dir data
Notes:
- If
--emails-csvis omitted, the script attempts to download from Kaggle datasetwcukierski/enron-email-datasetusing Kaggle API (requiresKAGGLE_USERNAMEandKAGGLE_KEY). Alternatively, pass a local path to--emails-csv.
Notes:
- The script parses emails, chunks header/body into passages, builds a compact LEANN index, and then builds a FAISS Flat baseline from the same passages and embedding model.
- Optionally, it will also create evaluation queries from HuggingFace dataset
corbt/enron_emails_sample_questions.
- Run recall evaluation (Stage 2)
python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 2
- Complexity sweep (Stage 3)
python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 3 --target-recall 0.90 --max-queries 200
Stage 3 uses binary search over complexity to find the minimal value achieving the target Recall@3 (assumes recall is non-decreasing with complexity). The search expands the upper bound as needed and snaps complexity to multiples of 8.
- Index comparison (Stage 4)
python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 4 --complexity 88 --max-queries 100 --output results.json
- Generation evaluation (Stage 5)
python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 5 --complexity 88 --llm-backend hf --model-name Qwen/Qwen3-8B
- Combined index + generation evaluation (Stages 4+5, recommended)
python evaluate_enron_emails.py --index data/enron_index_hnsw.leann --stage 45 --complexity 88 --llm-backend hf
Notes:
- Minimal CLI: you can run from repo root with only
--index, defaults match financebench/laion patterns:--stagedefaults toall(runs 2, 3, 4, 5)--baseline-dirdefaults tobaseline--queriesdefaults todata/evaluation_queries.jsonl(or falls back to the index directory)--llm-backenddefaults tohf(HuggingFace), can usevllm--model-namedefaults toQwen/Qwen3-8B
- Fail-fast behavior: no silent fallbacks. If compact index cannot run with recompute, it errors out.
- Stage 5 requires Stage 4 retrieval results. Use
--stage 45to run both efficiently.
Optional flags:
- --queries data/evaluation_queries.jsonl (custom queries file)
- --baseline-dir baseline (where FAISS baseline lives)
- --complexity 88 (LEANN complexity parameter, optimal for 90% recall)
- --llm-backend hf|vllm (LLM backend for generation)
- --model-name Qwen/Qwen3-8B (LLM model for generation)
- --max-queries 1000 (limit number of queries for evaluation)
Files Produced
- data/enron_passages_preview.jsonl: Small preview of passages used (for inspection)
- data/enron_index_hnsw.leann.*: LEANN index files
- baseline/faiss_flat.index + baseline/metadata.pkl: FAISS baseline with passage IDs
- data/evaluation_queries.jsonl: Query file (id + query; includes GT IDs for reference)
Notes
- Evaluates both retrieval Recall@3 and generation timing with Qwen3-8B thinking model.
- The emails CSV must contain a column named "message" (raw RFC822 email) and a column named "file" for source identifier. Message-ID headers are parsed as canonical message IDs when present.
- Qwen3-8B requires special handling for thinking models with chat templates and tag processing.
Stages Summary
-
Stage 2 (Recall@3):
- Compares LEANN vs FAISS Flat baseline on Recall@3.
- Compact index runs with
recompute_embeddings=True.
-
Stage 3 (Binary Search for Complexity):
- Builds a non-compact index (
<index>_noncompact.leann) and runs binary search withrecompute_embeddings=Falseto find the minimal complexity achieving target Recall@3 (default 90%).
- Builds a non-compact index (
-
Stage 4 (Index Comparison):
- Reports .index-only sizes for compact vs non-compact.
- Measures timings on queries by default: non-compact (no recompute) vs compact (with recompute).
- Stores retrieval results for Stage 5 generation evaluation.
- Fails fast if compact recompute cannot run.
- If
--complexityis not provided, the script tries to use the best complexity from Stage 3:- First from the current run (when running
--stage all), otherwise - From
enron_stage3_results.jsonsaved next to the index during the last Stage 3 run. - If neither exists, Stage 4 will error and ask you to run Stage 3 or pass
--complexity.
- First from the current run (when running
-
Stage 5 (Generation Evaluation):
- Uses Qwen3-8B thinking model for RAG generation on retrieved documents from Stage 4.
- Supports HuggingFace (
hf) and vLLM (vllm) backends. - Measures generation timing separately from search timing.
- Requires Stage 4 results (no additional searching performed).
Example Results
These are sample results obtained on Enron data using all-mpnet-base-v2 and Qwen3-8B.
-
Stage 3 (Binary Search):
- Minimal complexity achieving 90% Recall@3: 88
- Sampled points:
- C=8 → 59.9% Recall@3
- C=72 → 89.4% Recall@3
- C=88 → 90.2% Recall@3
- C=96 → 90.7% Recall@3
- C=112 → 91.1% Recall@3
- C=136 → 91.3% Recall@3
- C=256 → 92.0% Recall@3
-
Stage 4 (Index Sizes, .index only):
- Compact: ~2.2 MB
- Non-compact: ~82.0 MB
- Storage saving by compact: ~97.3%
-
Stage 4 (Search Timing, 988 queries, complexity=88):
- Non-compact (no recompute): ~0.0075 s avg per query
- Compact (with recompute): ~1.981 s avg per query
- Speed ratio (non-compact/compact): ~0.0038x
-
Stage 5 (RAG Generation, 988 queries, Qwen3-8B):
- Average generation time: ~22.302 s per query
- Total queries processed: 988
- LLM backend: HuggingFace transformers
- Model: Qwen/Qwen3-8B (thinking model with processing)
Full JSON output is saved by the script (see --output), e.g.:
benchmarks/enron_emails/results_enron_stage45.json.