290 lines
11 KiB
Python
290 lines
11 KiB
Python
import os
|
|
import sys
|
|
import asyncio
|
|
import dotenv
|
|
import argparse
|
|
from pathlib import Path
|
|
from typing import List, Any
|
|
|
|
# Add the project root to Python path so we can import from examples
|
|
project_root = Path(__file__).parent.parent
|
|
sys.path.insert(0, str(project_root))
|
|
|
|
from leann.api import LeannBuilder, LeannSearcher, LeannChat
|
|
from llama_index.core.node_parser import SentenceSplitter
|
|
|
|
dotenv.load_dotenv()
|
|
|
|
# Auto-detect user's mail path
|
|
def get_mail_path():
|
|
"""Get the mail path for the current user"""
|
|
home_dir = os.path.expanduser("~")
|
|
return os.path.join(home_dir, "Library", "Mail")
|
|
|
|
# Default mail path for macOS
|
|
DEFAULT_MAIL_PATH = "/Users/yichuan/Library/Mail/V10/0FCA0879-FD8C-4B7E-83BF-FDDA930791C5/[Gmail].mbox/All Mail.mbox/78BA5BE1-8819-4F9A-9613-EB63772F1DD0/Data"
|
|
|
|
def create_leann_index_from_multiple_sources(messages_dirs: List[Path], index_path: str = "mail_index.leann", max_count: int = -1, include_html: bool = False, embedding_model: str = "facebook/contriever"):
|
|
"""
|
|
Create LEANN index from multiple mail data sources.
|
|
|
|
Args:
|
|
messages_dirs: List of Path objects pointing to Messages directories
|
|
index_path: Path to save the LEANN index
|
|
max_count: Maximum number of emails to process per directory
|
|
include_html: Whether to include HTML content in email processing
|
|
"""
|
|
print("Creating LEANN index from multiple mail data sources...")
|
|
|
|
# Load documents using EmlxReader from LEANN_email_reader
|
|
from examples.email_data.LEANN_email_reader import EmlxReader
|
|
reader = EmlxReader(include_html=include_html)
|
|
# from email_data.email import EmlxMboxReader
|
|
# from pathlib import Path
|
|
# reader = EmlxMboxReader()
|
|
INDEX_DIR = Path(index_path).parent
|
|
|
|
if not INDEX_DIR.exists():
|
|
print(f"--- Index directory not found, building new index ---")
|
|
all_documents = []
|
|
total_processed = 0
|
|
|
|
# Process each Messages directory
|
|
for i, messages_dir in enumerate(messages_dirs):
|
|
print(f"\nProcessing Messages directory {i+1}/{len(messages_dirs)}: {messages_dir}")
|
|
|
|
try:
|
|
documents = reader.load_data(messages_dir)
|
|
if documents:
|
|
print(f"Loaded {len(documents)} email documents from {messages_dir}")
|
|
all_documents.extend(documents)
|
|
total_processed += len(documents)
|
|
|
|
# Check if we've reached the max count
|
|
if max_count > 0 and total_processed >= max_count:
|
|
print(f"Reached max count of {max_count} documents")
|
|
break
|
|
else:
|
|
print(f"No documents loaded from {messages_dir}")
|
|
except Exception as e:
|
|
print(f"Error processing {messages_dir}: {e}")
|
|
continue
|
|
|
|
if not all_documents:
|
|
print("No documents loaded from any source. Exiting.")
|
|
return None
|
|
|
|
print(f"\nTotal loaded {len(all_documents)} email documents from {len(messages_dirs)} directories and starting to split them into chunks")
|
|
|
|
# Create text splitter with 256 chunk size
|
|
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=25)
|
|
|
|
# Convert Documents to text strings and chunk them
|
|
all_texts = []
|
|
for doc in all_documents:
|
|
# Split the document into chunks
|
|
nodes = text_splitter.get_nodes_from_documents([doc])
|
|
for node in nodes:
|
|
text = node.get_content()
|
|
# text = '[subject] ' + doc.metadata["subject"] + '\n' + text
|
|
all_texts.append(text)
|
|
|
|
print(f"Finished splitting {len(all_documents)} documents into {len(all_texts)} text chunks")
|
|
|
|
# Create LEANN index directory
|
|
|
|
print(f"--- Index directory not found, building new index ---")
|
|
INDEX_DIR.mkdir(exist_ok=True)
|
|
|
|
print(f"--- Building new LEANN index ---")
|
|
|
|
print(f"\n[PHASE 1] Building Leann index...")
|
|
|
|
# Use HNSW backend for better macOS compatibility
|
|
builder = LeannBuilder(
|
|
backend_name="hnsw",
|
|
embedding_model=embedding_model,
|
|
graph_degree=32,
|
|
complexity=64,
|
|
is_compact=True,
|
|
is_recompute=True,
|
|
num_threads=1 # Force single-threaded mode
|
|
)
|
|
|
|
print(f"Adding {len(all_texts)} email chunks to index...")
|
|
for chunk_text in all_texts:
|
|
builder.add_text(chunk_text)
|
|
|
|
builder.build_index(index_path)
|
|
print(f"\nLEANN index built at {index_path}!")
|
|
else:
|
|
print(f"--- Using existing index at {INDEX_DIR} ---")
|
|
|
|
return index_path
|
|
|
|
def create_leann_index(mail_path: str, index_path: str = "mail_index.leann", max_count: int = 1000, include_html: bool = False, embedding_model: str = "facebook/contriever"):
|
|
"""
|
|
Create LEANN index from mail data.
|
|
|
|
Args:
|
|
mail_path: Path to the mail directory
|
|
index_path: Path to save the LEANN index
|
|
max_count: Maximum number of emails to process
|
|
include_html: Whether to include HTML content in email processing
|
|
"""
|
|
print("Creating LEANN index from mail data...")
|
|
INDEX_DIR = Path(index_path).parent
|
|
|
|
if not INDEX_DIR.exists():
|
|
print(f"--- Index directory not found, building new index ---")
|
|
INDEX_DIR.mkdir(exist_ok=True)
|
|
|
|
print(f"--- Building new LEANN index ---")
|
|
|
|
print(f"\n[PHASE 1] Building Leann index...")
|
|
|
|
# Load documents using EmlxReader from LEANN_email_reader
|
|
from examples.email_data.LEANN_email_reader import EmlxReader
|
|
reader = EmlxReader(include_html=include_html)
|
|
# from email_data.email import EmlxMboxReader
|
|
# from pathlib import Path
|
|
# reader = EmlxMboxReader()
|
|
documents = reader.load_data(Path(mail_path))
|
|
|
|
if not documents:
|
|
print("No documents loaded. Exiting.")
|
|
return None
|
|
|
|
print(f"Loaded {len(documents)} email documents")
|
|
|
|
# Create text splitter with 256 chunk size
|
|
text_splitter = SentenceSplitter(chunk_size=256, chunk_overlap=128)
|
|
|
|
# Convert Documents to text strings and chunk them
|
|
all_texts = []
|
|
for doc in documents:
|
|
# Split the document into chunks
|
|
nodes = text_splitter.get_nodes_from_documents([doc])
|
|
for node in nodes:
|
|
all_texts.append(node.get_content())
|
|
|
|
print(f"Created {len(all_texts)} text chunks from {len(documents)} documents")
|
|
|
|
# Create LEANN index directory
|
|
|
|
print(f"--- Index directory not found, building new index ---")
|
|
INDEX_DIR.mkdir(exist_ok=True)
|
|
|
|
print(f"--- Building new LEANN index ---")
|
|
|
|
print(f"\n[PHASE 1] Building Leann index...")
|
|
|
|
# Use HNSW backend for better macOS compatibility
|
|
builder = LeannBuilder(
|
|
backend_name="hnsw",
|
|
embedding_model=embedding_model,
|
|
graph_degree=32,
|
|
complexity=64,
|
|
is_compact=True,
|
|
is_recompute=True,
|
|
num_threads=1 # Force single-threaded mode
|
|
)
|
|
|
|
print(f"Adding {len(all_texts)} email chunks to index...")
|
|
for chunk_text in all_texts:
|
|
builder.add_text(chunk_text)
|
|
|
|
builder.build_index(index_path)
|
|
print(f"\nLEANN index built at {index_path}!")
|
|
else:
|
|
print(f"--- Using existing index at {INDEX_DIR} ---")
|
|
|
|
return index_path
|
|
|
|
async def query_leann_index(index_path: str, query: str):
|
|
"""
|
|
Query the LEANN index.
|
|
|
|
Args:
|
|
index_path: Path to the LEANN index
|
|
query: The query string
|
|
"""
|
|
print(f"\n[PHASE 2] Starting Leann chat session...")
|
|
chat = LeannChat(index_path=index_path,
|
|
llm_config={"type": "openai", "model": "gpt-4o"})
|
|
|
|
print(f"You: {query}")
|
|
import time
|
|
start_time = time.time()
|
|
chat_response = chat.ask(
|
|
query,
|
|
top_k=20,
|
|
recompute_beighbor_embeddings=True,
|
|
complexity=32,
|
|
beam_width=1,
|
|
)
|
|
end_time = time.time()
|
|
print(f"Time taken: {end_time - start_time} seconds")
|
|
print(f"Leann: {chat_response}")
|
|
|
|
async def main():
|
|
# Parse command line arguments
|
|
parser = argparse.ArgumentParser(description='LEANN Mail Reader - Create and query email index')
|
|
# Remove --mail-path argument and auto-detect all Messages directories
|
|
# Remove DEFAULT_MAIL_PATH
|
|
parser.add_argument('--index-dir', type=str, default="./mail_index_index_file",
|
|
help='Directory to store the LEANN index (default: ./mail_index_leann_raw_text_all_dicts)')
|
|
parser.add_argument('--max-emails', type=int, default=1000,
|
|
help='Maximum number of emails to process (-1 means all)')
|
|
parser.add_argument('--query', type=str, default="Give me some funny advertisement about apple or other companies",
|
|
help='Single query to run (default: runs example queries)')
|
|
parser.add_argument('--include-html', action='store_true', default=False,
|
|
help='Include HTML content in email processing (default: False)')
|
|
parser.add_argument('--embedding-model', type=str, default="facebook/contriever",
|
|
help='Embedding model to use (default: facebook/contriever)')
|
|
|
|
args = parser.parse_args()
|
|
|
|
print(f"args: {args}")
|
|
|
|
# Automatically find all Messages directories under the current user's Mail directory
|
|
from examples.email_data.LEANN_email_reader import find_all_messages_directories
|
|
mail_path = get_mail_path()
|
|
print(f"Searching for email data in: {mail_path}")
|
|
messages_dirs = find_all_messages_directories(mail_path)
|
|
# messages_dirs = find_all_messages_directories(DEFAULT_MAIL_PATH)
|
|
# messages_dirs = [DEFAULT_MAIL_PATH]
|
|
# messages_dirs = messages_dirs[:1]
|
|
|
|
print('len(messages_dirs): ', len(messages_dirs))
|
|
|
|
|
|
if not messages_dirs:
|
|
print("No Messages directories found. Exiting.")
|
|
return
|
|
|
|
INDEX_DIR = Path(args.index_dir)
|
|
INDEX_PATH = str(INDEX_DIR / "mail_documents.leann")
|
|
print(f"Index directory: {INDEX_DIR}")
|
|
print(f"Found {len(messages_dirs)} Messages directories.")
|
|
|
|
# Create or load the LEANN index from all sources
|
|
index_path = create_leann_index_from_multiple_sources(messages_dirs, INDEX_PATH, args.max_emails, args.include_html, args.embedding_model)
|
|
|
|
if index_path:
|
|
if args.query:
|
|
# Run single query
|
|
await query_leann_index(index_path, args.query)
|
|
else:
|
|
# Example queries
|
|
queries = [
|
|
"Hows Berkeley Graduate Student Instructor",
|
|
"how's the icloud related advertisement saying",
|
|
"Whats the number of class recommend to take per semester for incoming EECS students"
|
|
]
|
|
for query in queries:
|
|
print("\n" + "="*60)
|
|
await query_leann_index(index_path, query)
|
|
|
|
if __name__ == "__main__":
|
|
asyncio.run(main()) |