- Fix ambiguous fullwidth characters (commas, parentheses) in strings and comments - Replace Chinese comments with English equivalents - Fix unused imports with proper noqa annotations for intentional imports - Fix bare except clauses with specific exception types - Fix redefined variables and undefined names - Add ruff noqa annotations for generated protobuf files - Add lint and format check to GitHub Actions CI pipeline
119 lines
3.8 KiB
Python
119 lines
3.8 KiB
Python
import argparse
|
|
import asyncio
|
|
from pathlib import Path
|
|
|
|
import dotenv
|
|
from leann.api import LeannBuilder, LeannChat
|
|
from llama_index.core import SimpleDirectoryReader
|
|
from llama_index.core.node_parser import SentenceSplitter
|
|
|
|
dotenv.load_dotenv()
|
|
|
|
|
|
async def main(args):
|
|
INDEX_DIR = Path(args.index_dir)
|
|
INDEX_PATH = str(INDEX_DIR / "pdf_documents.leann")
|
|
|
|
if not INDEX_DIR.exists():
|
|
node_parser = SentenceSplitter(
|
|
chunk_size=256, chunk_overlap=128, separator=" ", paragraph_separator="\n\n"
|
|
)
|
|
|
|
print("Loading documents...")
|
|
documents = SimpleDirectoryReader(
|
|
args.data_dir,
|
|
recursive=True,
|
|
encoding="utf-8",
|
|
required_exts=[".pdf", ".txt", ".md"],
|
|
).load_data(show_progress=True)
|
|
print("Documents loaded.")
|
|
all_texts = []
|
|
for doc in documents:
|
|
nodes = node_parser.get_nodes_from_documents([doc])
|
|
for node in nodes:
|
|
all_texts.append(node.get_content())
|
|
|
|
print("--- Index directory not found, building new index ---")
|
|
|
|
print("\n[PHASE 1] Building Leann index...")
|
|
|
|
# Use HNSW backend for better macOS compatibility
|
|
builder = LeannBuilder(
|
|
backend_name="hnsw",
|
|
embedding_model="facebook/contriever",
|
|
graph_degree=32,
|
|
complexity=64,
|
|
is_compact=True,
|
|
is_recompute=True,
|
|
num_threads=1, # Force single-threaded mode
|
|
)
|
|
|
|
print(f"Loaded {len(all_texts)} text chunks from documents.")
|
|
for chunk_text in all_texts:
|
|
builder.add_text(chunk_text)
|
|
|
|
builder.build_index(INDEX_PATH)
|
|
print(f"\nLeann index built at {INDEX_PATH}!")
|
|
else:
|
|
print(f"--- Using existing index at {INDEX_DIR} ---")
|
|
|
|
print("\n[PHASE 2] Starting Leann chat session...")
|
|
|
|
llm_config = {"type": "hf", "model": "Qwen/Qwen3-4B"}
|
|
llm_config = {"type": "ollama", "model": "qwen3:8b"}
|
|
llm_config = {"type": "openai", "model": "gpt-4o"}
|
|
|
|
chat = LeannChat(index_path=INDEX_PATH, llm_config=llm_config)
|
|
# query = (
|
|
# "什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发"
|
|
# )
|
|
query = args.query
|
|
|
|
print(f"You: {query}")
|
|
chat_response = chat.ask(query, top_k=20, recompute_embeddings=True, complexity=32)
|
|
print(f"Leann chat response: \033[36m{chat_response}\033[0m")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Run Leann Chat with various LLM backends.")
|
|
parser.add_argument(
|
|
"--llm",
|
|
type=str,
|
|
default="hf",
|
|
choices=["simulated", "ollama", "hf", "openai"],
|
|
help="The LLM backend to use.",
|
|
)
|
|
parser.add_argument(
|
|
"--model",
|
|
type=str,
|
|
default="Qwen/Qwen3-0.6B",
|
|
help="The model name to use (e.g., 'llama3:8b' for ollama, 'deepseek-ai/deepseek-llm-7b-chat' for hf, 'gpt-4o' for openai).",
|
|
)
|
|
parser.add_argument(
|
|
"--host",
|
|
type=str,
|
|
default="http://localhost:11434",
|
|
help="The host for the Ollama API.",
|
|
)
|
|
parser.add_argument(
|
|
"--index-dir",
|
|
type=str,
|
|
default="./test_doc_files",
|
|
help="Directory where the Leann index will be stored.",
|
|
)
|
|
parser.add_argument(
|
|
"--data-dir",
|
|
type=str,
|
|
default="examples/data",
|
|
help="Directory containing documents to index (PDF, TXT, MD files).",
|
|
)
|
|
parser.add_argument(
|
|
"--query",
|
|
type=str,
|
|
default="Based on the paper, what are the main techniques LEANN explores to reduce the storage overhead and DLPM explore to achieve Fairness and Efiiciency trade-off?",
|
|
help="The query to ask the Leann chat system.",
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
asyncio.run(main(args))
|