* refactor: Unify examples interface with BaseRAGExample - Create BaseRAGExample base class for all RAG examples - Refactor 4 examples to use unified interface: - document_rag.py (replaces main_cli_example.py) - email_rag.py (replaces mail_reader_leann.py) - browser_rag.py (replaces google_history_reader_leann.py) - wechat_rag.py (replaces wechat_history_reader_leann.py) - Maintain 100% parameter compatibility with original files - Add interactive mode support for all examples - Unify parameter names (--max-items replaces --max-emails/--max-entries) - Update README.md with new examples usage - Add PARAMETER_CONSISTENCY.md documenting all parameter mappings - Keep main_cli_example.py for backward compatibility with migration notice All default values, LeannBuilder parameters, and chunking settings remain identical to ensure full compatibility with existing indexes. * fix: Update CI tests for new unified examples interface - Rename test_main_cli.py to test_document_rag.py - Update all references from main_cli_example.py to document_rag.py - Update tests/README.md documentation The tests now properly test the new unified interface while maintaining the same test coverage and functionality. * fix: Fix pre-commit issues and update tests - Fix import sorting and unused imports - Update type annotations to use built-in types (list, dict) instead of typing.List/Dict - Fix trailing whitespace and end-of-file issues - Fix Chinese fullwidth comma to regular comma - Update test_main_cli.py to test_document_rag.py - Add backward compatibility test for main_cli_example.py - Pass all pre-commit hooks (ruff, ruff-format, etc.) * refactor: Remove old example scripts and migration references - Delete old example scripts (mail_reader_leann.py, google_history_reader_leann.py, etc.) - Remove migration hints and backward compatibility - Update tests to use new unified examples directly - Clean up all references to old script names - Users now only see the new unified interface * fix: Restore embedding-mode parameter to all examples - All examples now have --embedding-mode parameter (unified interface benefit) - Default is 'sentence-transformers' (consistent with original behavior) - Users can now use OpenAI or MLX embeddings with any data source - Maintains functional equivalence with original scripts * docs: Improve parameter categorization in README - Clearly separate core (shared) vs specific parameters - Move LLM and embedding examples to 'Example Commands' section - Add descriptive comments for all specific parameters - Keep only truly data-source-specific parameters in specific sections * docs: Make example commands more representative - Add default values to parameter descriptions - Replace generic examples with real-world use cases - Focus on data-source-specific features in examples - Remove redundant demonstrations of common parameters * docs: Reorganize parameter documentation structure - Move common parameters to a dedicated section before all examples - Rename sections to 'X-Specific Arguments' for clarity - Remove duplicate common parameters from individual examples - Better information architecture for users * docs: polish applications * docs: Add CLI installation instructions - Add two installation options: venv and global uv tool - Clearly explain when to use each option - Make CLI more accessible for daily use * docs: Clarify CLI global installation process - Explain the transition from venv to global installation - Add upgrade command for global installation - Make it clear that global install allows usage without venv activation * docs: Add collapsible section for CLI installation - Wrap CLI installation instructions in details/summary tags - Keep consistent with other collapsible sections in README - Improve document readability and navigation * style: format * docs: Fix collapsible sections - Make Common Parameters collapsible (as it's lengthy reference material) - Keep CLI Installation visible (important for users to see immediately) - Better information hierarchy * docs: Add introduction for Common Parameters section - Add 'Flexible Configuration' heading with descriptive sentence - Create parallel structure with 'Generation Model Setup' section - Improve document flow and readability * docs: nit * fix: Fix issues in unified examples - Add smart path detection for data directory - Fix add_texts -> add_text method call - Handle both running from project root and examples directory * fix: Fix async/await and add_text issues in unified examples - Remove incorrect await from chat.ask() calls (not async) - Fix add_texts -> add_text method calls - Verify search-complexity correctly maps to efSearch parameter - All examples now run successfully * feat: Address review comments - Add complexity parameter to LeannChat initialization (default: search_complexity) - Fix chunk-size default in README documentation (256, not 2048) - Add more index building parameters as CLI arguments: - --backend-name (hnsw/diskann) - --graph-degree (default: 32) - --build-complexity (default: 64) - --no-compact (disable compact storage) - --no-recompute (disable embedding recomputation) - Update README to document all new parameters * feat: Add chunk-size parameters and improve file type filtering - Add --chunk-size and --chunk-overlap parameters to all RAG examples - Preserve original default values for each data source: - Document: 256/128 (optimized for general documents) - Email: 256/25 (smaller overlap for email threads) - Browser: 256/128 (standard for web content) - WeChat: 192/64 (smaller chunks for chat messages) - Make --file-types optional filter instead of restriction in document_rag - Update README to clarify interactive mode and parameter usage - Fix LLM default model documentation (gpt-4o, not gpt-4o-mini) * feat: Update documentation based on review feedback - Add MLX embedding example to README - Clarify examples/data content description (two papers, Pride and Prejudice, Chinese README) - Move chunk parameters to common parameters section - Remove duplicate chunk parameters from document-specific section * docs: Emphasize diverse data sources in examples/data description * fix: update default embedding models for better performance - Change WeChat, Browser, and Email RAG examples to use all-MiniLM-L6-v2 - Previous Qwen/Qwen3-Embedding-0.6B was too slow for these use cases - all-MiniLM-L6-v2 is a fast 384-dim model, ideal for large-scale personal data * add response highlight * change rebuild logic * fix some example * feat: check if k is larger than #docs * fix: WeChat history reader bugs and refactor wechat_rag to use unified architecture * fix email wrong -1 to process all file * refactor: reorgnize all examples/ and test/ * refactor: reorganize examples and add link checker * fix: add init.py * fix: handle certificate errors in link checker * fix wechat * merge * docs: update README to use proper module imports for apps - Change from 'python apps/xxx.py' to 'python -m apps.xxx' - More professional and pythonic module calling - Ensures proper module resolution and imports - Better separation between apps/ (production tools) and examples/ (demos) --------- Co-authored-by: yichuan520030910320 <yichuan_wang@berkeley.edu>
297 lines
10 KiB
Python
297 lines
10 KiB
Python
"""
|
|
Base class for unified RAG examples interface.
|
|
Provides common parameters and functionality for all RAG examples.
|
|
"""
|
|
|
|
import argparse
|
|
from abc import ABC, abstractmethod
|
|
from pathlib import Path
|
|
from typing import Any
|
|
|
|
import dotenv
|
|
from leann.api import LeannBuilder, LeannChat
|
|
from llama_index.core.node_parser import SentenceSplitter
|
|
|
|
dotenv.load_dotenv()
|
|
|
|
|
|
class BaseRAGExample(ABC):
|
|
"""Base class for all RAG examples with unified interface."""
|
|
|
|
def __init__(
|
|
self,
|
|
name: str,
|
|
description: str,
|
|
default_index_name: str,
|
|
):
|
|
self.name = name
|
|
self.description = description
|
|
self.default_index_name = default_index_name
|
|
self.parser = self._create_parser()
|
|
|
|
def _create_parser(self) -> argparse.ArgumentParser:
|
|
"""Create argument parser with common parameters."""
|
|
parser = argparse.ArgumentParser(
|
|
description=self.description, formatter_class=argparse.RawDescriptionHelpFormatter
|
|
)
|
|
|
|
# Core parameters (all examples share these)
|
|
core_group = parser.add_argument_group("Core Parameters")
|
|
core_group.add_argument(
|
|
"--index-dir",
|
|
type=str,
|
|
default=f"./{self.default_index_name}",
|
|
help=f"Directory to store the index (default: ./{self.default_index_name})",
|
|
)
|
|
core_group.add_argument(
|
|
"--query",
|
|
type=str,
|
|
default=None,
|
|
help="Query to run (if not provided, will run in interactive mode)",
|
|
)
|
|
# Allow subclasses to override default max_items
|
|
max_items_default = getattr(self, "max_items_default", -1)
|
|
core_group.add_argument(
|
|
"--max-items",
|
|
type=int,
|
|
default=max_items_default,
|
|
help="Maximum number of items to process -1 for all, means index all documents, and you should set it to a reasonable number if you have a large dataset and try at the first time)",
|
|
)
|
|
core_group.add_argument(
|
|
"--force-rebuild", action="store_true", help="Force rebuild index even if it exists"
|
|
)
|
|
|
|
# Embedding parameters
|
|
embedding_group = parser.add_argument_group("Embedding Parameters")
|
|
# Allow subclasses to override default embedding_model
|
|
embedding_model_default = getattr(self, "embedding_model_default", "facebook/contriever")
|
|
embedding_group.add_argument(
|
|
"--embedding-model",
|
|
type=str,
|
|
default=embedding_model_default,
|
|
help=f"Embedding model to use (default: {embedding_model_default})",
|
|
)
|
|
embedding_group.add_argument(
|
|
"--embedding-mode",
|
|
type=str,
|
|
default="sentence-transformers",
|
|
choices=["sentence-transformers", "openai", "mlx"],
|
|
help="Embedding backend mode (default: sentence-transformers)",
|
|
)
|
|
|
|
# LLM parameters
|
|
llm_group = parser.add_argument_group("LLM Parameters")
|
|
llm_group.add_argument(
|
|
"--llm",
|
|
type=str,
|
|
default="openai",
|
|
choices=["openai", "ollama", "hf"],
|
|
help="LLM backend to use (default: openai)",
|
|
)
|
|
llm_group.add_argument(
|
|
"--llm-model",
|
|
type=str,
|
|
default=None,
|
|
help="LLM model name (default: gpt-4o for openai, llama3.2:1b for ollama)",
|
|
)
|
|
llm_group.add_argument(
|
|
"--llm-host",
|
|
type=str,
|
|
default="http://localhost:11434",
|
|
help="Host for Ollama API (default: http://localhost:11434)",
|
|
)
|
|
|
|
# Search parameters
|
|
search_group = parser.add_argument_group("Search Parameters")
|
|
search_group.add_argument(
|
|
"--top-k", type=int, default=20, help="Number of results to retrieve (default: 20)"
|
|
)
|
|
search_group.add_argument(
|
|
"--search-complexity",
|
|
type=int,
|
|
default=32,
|
|
help="Search complexity for graph traversal (default: 64)",
|
|
)
|
|
|
|
# Index building parameters
|
|
index_group = parser.add_argument_group("Index Building Parameters")
|
|
index_group.add_argument(
|
|
"--backend-name",
|
|
type=str,
|
|
default="hnsw",
|
|
choices=["hnsw", "diskann"],
|
|
help="Backend to use for index (default: hnsw)",
|
|
)
|
|
index_group.add_argument(
|
|
"--graph-degree",
|
|
type=int,
|
|
default=32,
|
|
help="Graph degree for index construction (default: 32)",
|
|
)
|
|
index_group.add_argument(
|
|
"--build-complexity",
|
|
type=int,
|
|
default=64,
|
|
help="Build complexity for index construction (default: 64)",
|
|
)
|
|
index_group.add_argument(
|
|
"--no-compact",
|
|
action="store_true",
|
|
help="Disable compact index storage",
|
|
)
|
|
index_group.add_argument(
|
|
"--no-recompute",
|
|
action="store_true",
|
|
help="Disable embedding recomputation",
|
|
)
|
|
|
|
# Add source-specific parameters
|
|
self._add_specific_arguments(parser)
|
|
|
|
return parser
|
|
|
|
@abstractmethod
|
|
def _add_specific_arguments(self, parser: argparse.ArgumentParser):
|
|
"""Add source-specific arguments. Override in subclasses."""
|
|
pass
|
|
|
|
@abstractmethod
|
|
async def load_data(self, args) -> list[str]:
|
|
"""Load data from the source. Returns list of text chunks."""
|
|
pass
|
|
|
|
def get_llm_config(self, args) -> dict[str, Any]:
|
|
"""Get LLM configuration based on arguments."""
|
|
config = {"type": args.llm}
|
|
|
|
if args.llm == "openai":
|
|
config["model"] = args.llm_model or "gpt-4o"
|
|
elif args.llm == "ollama":
|
|
config["model"] = args.llm_model or "llama3.2:1b"
|
|
config["host"] = args.llm_host
|
|
elif args.llm == "hf":
|
|
config["model"] = args.llm_model or "Qwen/Qwen2.5-1.5B-Instruct"
|
|
|
|
return config
|
|
|
|
async def build_index(self, args, texts: list[str]) -> str:
|
|
"""Build LEANN index from texts."""
|
|
index_path = str(Path(args.index_dir) / f"{self.default_index_name}.leann")
|
|
|
|
print(f"\n[Building Index] Creating {self.name} index...")
|
|
print(f"Total text chunks: {len(texts)}")
|
|
|
|
builder = LeannBuilder(
|
|
backend_name=args.backend_name,
|
|
embedding_model=args.embedding_model,
|
|
embedding_mode=args.embedding_mode,
|
|
graph_degree=args.graph_degree,
|
|
complexity=args.build_complexity,
|
|
is_compact=not args.no_compact,
|
|
is_recompute=not args.no_recompute,
|
|
num_threads=1, # Force single-threaded mode
|
|
)
|
|
|
|
# Add texts in batches for better progress tracking
|
|
batch_size = 1000
|
|
for i in range(0, len(texts), batch_size):
|
|
batch = texts[i : i + batch_size]
|
|
for text in batch:
|
|
builder.add_text(text)
|
|
print(f"Added {min(i + batch_size, len(texts))}/{len(texts)} texts...")
|
|
|
|
print("Building index structure...")
|
|
builder.build_index(index_path)
|
|
print(f"Index saved to: {index_path}")
|
|
|
|
return index_path
|
|
|
|
async def run_interactive_chat(self, args, index_path: str):
|
|
"""Run interactive chat with the index."""
|
|
chat = LeannChat(
|
|
index_path,
|
|
llm_config=self.get_llm_config(args),
|
|
system_prompt=f"You are a helpful assistant that answers questions about {self.name} data.",
|
|
complexity=args.search_complexity,
|
|
)
|
|
|
|
print(f"\n[Interactive Mode] Chat with your {self.name} data!")
|
|
print("Type 'quit' or 'exit' to stop.\n")
|
|
|
|
while True:
|
|
try:
|
|
query = input("You: ").strip()
|
|
if query.lower() in ["quit", "exit", "q"]:
|
|
print("Goodbye!")
|
|
break
|
|
|
|
if not query:
|
|
continue
|
|
|
|
response = chat.ask(query, top_k=args.top_k, complexity=args.search_complexity)
|
|
print(f"\nAssistant: {response}\n")
|
|
|
|
except KeyboardInterrupt:
|
|
print("\nGoodbye!")
|
|
break
|
|
except Exception as e:
|
|
print(f"Error: {e}")
|
|
|
|
async def run_single_query(self, args, index_path: str, query: str):
|
|
"""Run a single query against the index."""
|
|
chat = LeannChat(
|
|
index_path,
|
|
llm_config=self.get_llm_config(args),
|
|
system_prompt=f"You are a helpful assistant that answers questions about {self.name} data.",
|
|
complexity=args.search_complexity,
|
|
)
|
|
|
|
print(f"\n[Query]: \033[36m{query}\033[0m")
|
|
response = chat.ask(query, top_k=args.top_k, complexity=args.search_complexity)
|
|
print(f"\n[Response]: \033[36m{response}\033[0m")
|
|
|
|
async def run(self):
|
|
"""Main entry point for the example."""
|
|
args = self.parser.parse_args()
|
|
|
|
# Check if index exists
|
|
index_path = str(Path(args.index_dir) / f"{self.default_index_name}.leann")
|
|
index_exists = Path(args.index_dir).exists()
|
|
|
|
if not index_exists or args.force_rebuild:
|
|
# Load data and build index
|
|
print(f"\n{'Rebuilding' if index_exists else 'Building'} index...")
|
|
texts = await self.load_data(args)
|
|
|
|
if not texts:
|
|
print("No data found to index!")
|
|
return
|
|
|
|
index_path = await self.build_index(args, texts)
|
|
else:
|
|
print(f"\nUsing existing index in {args.index_dir}")
|
|
|
|
# Run query or interactive mode
|
|
if args.query:
|
|
await self.run_single_query(args, index_path, args.query)
|
|
else:
|
|
await self.run_interactive_chat(args, index_path)
|
|
|
|
|
|
def create_text_chunks(documents, chunk_size=256, chunk_overlap=25) -> list[str]:
|
|
"""Helper function to create text chunks from documents."""
|
|
node_parser = SentenceSplitter(
|
|
chunk_size=chunk_size,
|
|
chunk_overlap=chunk_overlap,
|
|
separator=" ",
|
|
paragraph_separator="\n\n",
|
|
)
|
|
|
|
all_texts = []
|
|
for doc in documents:
|
|
nodes = node_parser.get_nodes_from_documents([doc])
|
|
if nodes:
|
|
all_texts.extend(node.get_content() for node in nodes)
|
|
|
|
return all_texts
|