Files
LEANN/apps/claude_rag.py
aakash 2dd4147de2 Add Claude RAG support - resolves #100
- Implement ClaudeReader for parsing JSON exports from Claude
- Add claude_rag.py following BaseRAGExample pattern
- Support both concatenated conversations and individual messages
- Handle multiple JSON formats and structures
- Include comprehensive error handling and user guidance
- Add metadata extraction (titles, timestamps, roles)
- Integrate with existing LEANN chunking and embedding systems

Features:
 JSON parsing from Claude exports
 ZIP file extraction support
 Multiple JSON format support (list, single object, wrapped)
 Conversation detection and structuring
 Message role identification (user/assistant)
 Metadata extraction and preservation
 Dual processing modes (concatenated/separate)
 Command-line interface with all LEANN options
 Comprehensive error handling
 Multiple input format support (.json, .zip, directories)

Usage:
python -m apps.claude_rag --export-path claude_export.json
python -m apps.claude_rag --export-path claude_export.zip --query 'Python help'
2025-09-29 01:56:37 -07:00

190 lines
7.0 KiB
Python

"""
Claude RAG example using the unified interface.
Supports Claude export data from JSON files.
"""
import sys
from pathlib import Path
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))
from base_rag_example import BaseRAGExample
from chunking import create_text_chunks
from .claude_data.claude_reader import ClaudeReader
class ClaudeRAG(BaseRAGExample):
"""RAG example for Claude conversation data."""
def __init__(self):
# Set default values BEFORE calling super().__init__
self.max_items_default = -1 # Process all conversations by default
self.embedding_model_default = (
"sentence-transformers/all-MiniLM-L6-v2" # Fast 384-dim model
)
super().__init__(
name="Claude",
description="Process and query Claude conversation exports with LEANN",
default_index_name="claude_conversations_index",
)
def _add_specific_arguments(self, parser):
"""Add Claude-specific arguments."""
claude_group = parser.add_argument_group("Claude Parameters")
claude_group.add_argument(
"--export-path",
type=str,
default="./claude_export",
help="Path to Claude export file (.json or .zip) or directory containing exports (default: ./claude_export)",
)
claude_group.add_argument(
"--concatenate-conversations",
action="store_true",
default=True,
help="Concatenate messages within conversations for better context (default: True)",
)
claude_group.add_argument(
"--separate-messages",
action="store_true",
help="Process each message as a separate document (overrides --concatenate-conversations)",
)
claude_group.add_argument(
"--chunk-size", type=int, default=512, help="Text chunk size (default: 512)"
)
claude_group.add_argument(
"--chunk-overlap", type=int, default=128, help="Text chunk overlap (default: 128)"
)
def _find_claude_exports(self, export_path: Path) -> list[Path]:
"""
Find Claude export files in the given path.
Args:
export_path: Path to search for exports
Returns:
List of paths to Claude export files
"""
export_files = []
if export_path.is_file():
if export_path.suffix.lower() in [".zip", ".json"]:
export_files.append(export_path)
elif export_path.is_dir():
# Look for zip and json files
export_files.extend(export_path.glob("*.zip"))
export_files.extend(export_path.glob("*.json"))
return export_files
async def load_data(self, args) -> list[str]:
"""Load Claude export data and convert to text chunks."""
export_path = Path(args.export_path)
if not export_path.exists():
print(f"Claude export path not found: {export_path}")
print(
"Please ensure you have exported your Claude data and placed it in the correct location."
)
print("\nTo export your Claude data:")
print("1. Open Claude in your browser")
print("2. Look for export/download options in settings or conversation menu")
print("3. Download the conversation data (usually in JSON format)")
print("4. Place the file/directory at the specified path")
print(
"\nNote: Claude export methods may vary. Check Claude's help documentation for current instructions."
)
return []
# Find export files
export_files = self._find_claude_exports(export_path)
if not export_files:
print(f"No Claude export files (.json or .zip) found in: {export_path}")
return []
print(f"Found {len(export_files)} Claude export files")
# Create reader with appropriate settings
concatenate = args.concatenate_conversations and not args.separate_messages
reader = ClaudeReader(concatenate_conversations=concatenate)
# Process each export file
all_documents = []
total_processed = 0
for i, export_file in enumerate(export_files):
print(f"\nProcessing export file {i + 1}/{len(export_files)}: {export_file.name}")
try:
# Apply max_items limit per file
max_per_file = -1
if args.max_items > 0:
remaining = args.max_items - total_processed
if remaining <= 0:
break
max_per_file = remaining
# Load conversations
documents = reader.load_data(
claude_export_path=str(export_file),
max_count=max_per_file,
include_metadata=True,
)
if documents:
all_documents.extend(documents)
total_processed += len(documents)
print(f"Processed {len(documents)} conversations from this file")
else:
print(f"No conversations loaded from {export_file}")
except Exception as e:
print(f"Error processing {export_file}: {e}")
continue
if not all_documents:
print("No conversations found to process!")
print("\nTroubleshooting:")
print("- Ensure the export file is a valid Claude export")
print("- Check that the JSON file contains conversation data")
print("- Try using a different export format or method")
print("- Check Claude's documentation for current export procedures")
return []
print(f"\nTotal conversations processed: {len(all_documents)}")
print("Now starting to split into text chunks... this may take some time")
# Convert to text chunks
all_texts = create_text_chunks(
all_documents, chunk_size=args.chunk_size, chunk_overlap=args.chunk_overlap
)
print(f"Created {len(all_texts)} text chunks from {len(all_documents)} conversations")
return all_texts
if __name__ == "__main__":
import asyncio
# Example queries for Claude RAG
print("\n🤖 Claude RAG Example")
print("=" * 50)
print("\nExample queries you can try:")
print("- 'What did I ask Claude about Python programming?'")
print("- 'Show me conversations about machine learning'")
print("- 'Find discussions about code optimization'")
print("- 'What advice did Claude give me about software design?'")
print("- 'Search for conversations about debugging techniques'")
print("\nTo get started:")
print("1. Export your Claude conversation data")
print("2. Place the JSON/ZIP file in ./claude_export/")
print("3. Run this script to build your personal Claude knowledge base!")
print("\nOr run without --query for interactive mode\n")
rag = ClaudeRAG()
asyncio.run(rag.run())