109 lines
3.3 KiB
Python
109 lines
3.3 KiB
Python
from abc import ABC, abstractmethod
|
|
import numpy as np
|
|
from typing import Dict, Any, List, Literal, Optional
|
|
|
|
|
|
class LeannBackendBuilderInterface(ABC):
|
|
"""Backend interface for building indexes"""
|
|
|
|
@abstractmethod
|
|
def build(
|
|
self, data: np.ndarray, ids: List[str], index_path: str, **kwargs
|
|
) -> None:
|
|
"""Build index
|
|
|
|
Args:
|
|
data: Vector data (N, D)
|
|
ids: List of string IDs for each vector
|
|
index_path: Path to save index
|
|
**kwargs: Backend-specific build parameters
|
|
"""
|
|
pass
|
|
|
|
|
|
class LeannBackendSearcherInterface(ABC):
|
|
"""Backend interface for searching"""
|
|
|
|
@abstractmethod
|
|
def __init__(self, index_path: str, **kwargs):
|
|
"""Initialize searcher
|
|
|
|
Args:
|
|
index_path: Path to index file
|
|
**kwargs: Backend-specific loading parameters
|
|
"""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def _ensure_server_running(
|
|
self, passages_source_file: str, port: Optional[int], **kwargs
|
|
) -> int:
|
|
"""Ensure server is running"""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def search(
|
|
self,
|
|
query: np.ndarray,
|
|
top_k: int,
|
|
complexity: int = 64,
|
|
beam_width: int = 1,
|
|
prune_ratio: float = 0.0,
|
|
recompute_embeddings: bool = False,
|
|
pruning_strategy: Literal["global", "local", "proportional"] = "global",
|
|
zmq_port: Optional[int] = None,
|
|
**kwargs,
|
|
) -> Dict[str, Any]:
|
|
"""Search for nearest neighbors
|
|
|
|
Args:
|
|
query: Query vectors (B, D) where B is batch size, D is dimension
|
|
top_k: Number of nearest neighbors to return
|
|
complexity: Search complexity/candidate list size, higher = more accurate but slower
|
|
beam_width: Number of parallel search paths/IO requests per iteration
|
|
prune_ratio: Ratio of neighbors to prune via approximate distance (0.0-1.0)
|
|
recompute_embeddings: Whether to fetch fresh embeddings from server vs use stored PQ codes
|
|
pruning_strategy: PQ candidate selection strategy - "global" (default), "local", or "proportional"
|
|
zmq_port: ZMQ port for embedding server communication. Must be provided if recompute_embeddings is True.
|
|
**kwargs: Backend-specific parameters
|
|
|
|
Returns:
|
|
{"labels": [...], "distances": [...]}
|
|
"""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def compute_query_embedding(
|
|
self,
|
|
query: str,
|
|
use_server_if_available: bool = True,
|
|
zmq_port: Optional[int] = None,
|
|
) -> np.ndarray:
|
|
"""Compute embedding for a query string
|
|
|
|
Args:
|
|
query: The query string to embed
|
|
zmq_port: ZMQ port for embedding server
|
|
use_server_if_available: Whether to try using embedding server first
|
|
|
|
Returns:
|
|
Query embedding as numpy array with shape (1, D)
|
|
"""
|
|
pass
|
|
|
|
|
|
class LeannBackendFactoryInterface(ABC):
|
|
"""Backend factory interface"""
|
|
|
|
@staticmethod
|
|
@abstractmethod
|
|
def builder(**kwargs) -> LeannBackendBuilderInterface:
|
|
"""Create Builder instance"""
|
|
pass
|
|
|
|
@staticmethod
|
|
@abstractmethod
|
|
def searcher(index_path: str, **kwargs) -> LeannBackendSearcherInterface:
|
|
"""Create Searcher instance"""
|
|
pass
|