Files
LEANN/packages/leann-core/src/leann/interface.py
2025-07-22 14:26:03 -07:00

109 lines
3.3 KiB
Python

from abc import ABC, abstractmethod
import numpy as np
from typing import Dict, Any, List, Literal, Optional
class LeannBackendBuilderInterface(ABC):
"""Backend interface for building indexes"""
@abstractmethod
def build(
self, data: np.ndarray, ids: List[str], index_path: str, **kwargs
) -> None:
"""Build index
Args:
data: Vector data (N, D)
ids: List of string IDs for each vector
index_path: Path to save index
**kwargs: Backend-specific build parameters
"""
pass
class LeannBackendSearcherInterface(ABC):
"""Backend interface for searching"""
@abstractmethod
def __init__(self, index_path: str, **kwargs):
"""Initialize searcher
Args:
index_path: Path to index file
**kwargs: Backend-specific loading parameters
"""
pass
@abstractmethod
def _ensure_server_running(
self, passages_source_file: str, port: Optional[int], **kwargs
) -> int:
"""Ensure server is running"""
pass
@abstractmethod
def search(
self,
query: np.ndarray,
top_k: int,
complexity: int = 64,
beam_width: int = 1,
prune_ratio: float = 0.0,
recompute_embeddings: bool = False,
pruning_strategy: Literal["global", "local", "proportional"] = "global",
zmq_port: Optional[int] = None,
**kwargs,
) -> Dict[str, Any]:
"""Search for nearest neighbors
Args:
query: Query vectors (B, D) where B is batch size, D is dimension
top_k: Number of nearest neighbors to return
complexity: Search complexity/candidate list size, higher = more accurate but slower
beam_width: Number of parallel search paths/IO requests per iteration
prune_ratio: Ratio of neighbors to prune via approximate distance (0.0-1.0)
recompute_embeddings: Whether to fetch fresh embeddings from server vs use stored PQ codes
pruning_strategy: PQ candidate selection strategy - "global" (default), "local", or "proportional"
zmq_port: ZMQ port for embedding server communication. Must be provided if recompute_embeddings is True.
**kwargs: Backend-specific parameters
Returns:
{"labels": [...], "distances": [...]}
"""
pass
@abstractmethod
def compute_query_embedding(
self,
query: str,
use_server_if_available: bool = True,
zmq_port: Optional[int] = None,
) -> np.ndarray:
"""Compute embedding for a query string
Args:
query: The query string to embed
zmq_port: ZMQ port for embedding server
use_server_if_available: Whether to try using embedding server first
Returns:
Query embedding as numpy array with shape (1, D)
"""
pass
class LeannBackendFactoryInterface(ABC):
"""Backend factory interface"""
@staticmethod
@abstractmethod
def builder(**kwargs) -> LeannBackendBuilderInterface:
"""Create Builder instance"""
pass
@staticmethod
@abstractmethod
def searcher(index_path: str, **kwargs) -> LeannBackendSearcherInterface:
"""Create Searcher instance"""
pass