* refactor: Unify examples interface with BaseRAGExample - Create BaseRAGExample base class for all RAG examples - Refactor 4 examples to use unified interface: - document_rag.py (replaces main_cli_example.py) - email_rag.py (replaces mail_reader_leann.py) - browser_rag.py (replaces google_history_reader_leann.py) - wechat_rag.py (replaces wechat_history_reader_leann.py) - Maintain 100% parameter compatibility with original files - Add interactive mode support for all examples - Unify parameter names (--max-items replaces --max-emails/--max-entries) - Update README.md with new examples usage - Add PARAMETER_CONSISTENCY.md documenting all parameter mappings - Keep main_cli_example.py for backward compatibility with migration notice All default values, LeannBuilder parameters, and chunking settings remain identical to ensure full compatibility with existing indexes. * fix: Update CI tests for new unified examples interface - Rename test_main_cli.py to test_document_rag.py - Update all references from main_cli_example.py to document_rag.py - Update tests/README.md documentation The tests now properly test the new unified interface while maintaining the same test coverage and functionality. * fix: Fix pre-commit issues and update tests - Fix import sorting and unused imports - Update type annotations to use built-in types (list, dict) instead of typing.List/Dict - Fix trailing whitespace and end-of-file issues - Fix Chinese fullwidth comma to regular comma - Update test_main_cli.py to test_document_rag.py - Add backward compatibility test for main_cli_example.py - Pass all pre-commit hooks (ruff, ruff-format, etc.) * refactor: Remove old example scripts and migration references - Delete old example scripts (mail_reader_leann.py, google_history_reader_leann.py, etc.) - Remove migration hints and backward compatibility - Update tests to use new unified examples directly - Clean up all references to old script names - Users now only see the new unified interface * fix: Restore embedding-mode parameter to all examples - All examples now have --embedding-mode parameter (unified interface benefit) - Default is 'sentence-transformers' (consistent with original behavior) - Users can now use OpenAI or MLX embeddings with any data source - Maintains functional equivalence with original scripts * docs: Improve parameter categorization in README - Clearly separate core (shared) vs specific parameters - Move LLM and embedding examples to 'Example Commands' section - Add descriptive comments for all specific parameters - Keep only truly data-source-specific parameters in specific sections * docs: Make example commands more representative - Add default values to parameter descriptions - Replace generic examples with real-world use cases - Focus on data-source-specific features in examples - Remove redundant demonstrations of common parameters * docs: Reorganize parameter documentation structure - Move common parameters to a dedicated section before all examples - Rename sections to 'X-Specific Arguments' for clarity - Remove duplicate common parameters from individual examples - Better information architecture for users * docs: polish applications * docs: Add CLI installation instructions - Add two installation options: venv and global uv tool - Clearly explain when to use each option - Make CLI more accessible for daily use * docs: Clarify CLI global installation process - Explain the transition from venv to global installation - Add upgrade command for global installation - Make it clear that global install allows usage without venv activation * docs: Add collapsible section for CLI installation - Wrap CLI installation instructions in details/summary tags - Keep consistent with other collapsible sections in README - Improve document readability and navigation * style: format * docs: Fix collapsible sections - Make Common Parameters collapsible (as it's lengthy reference material) - Keep CLI Installation visible (important for users to see immediately) - Better information hierarchy * docs: Add introduction for Common Parameters section - Add 'Flexible Configuration' heading with descriptive sentence - Create parallel structure with 'Generation Model Setup' section - Improve document flow and readability * docs: nit * fix: Fix issues in unified examples - Add smart path detection for data directory - Fix add_texts -> add_text method call - Handle both running from project root and examples directory * fix: Fix async/await and add_text issues in unified examples - Remove incorrect await from chat.ask() calls (not async) - Fix add_texts -> add_text method calls - Verify search-complexity correctly maps to efSearch parameter - All examples now run successfully * feat: Address review comments - Add complexity parameter to LeannChat initialization (default: search_complexity) - Fix chunk-size default in README documentation (256, not 2048) - Add more index building parameters as CLI arguments: - --backend-name (hnsw/diskann) - --graph-degree (default: 32) - --build-complexity (default: 64) - --no-compact (disable compact storage) - --no-recompute (disable embedding recomputation) - Update README to document all new parameters * feat: Add chunk-size parameters and improve file type filtering - Add --chunk-size and --chunk-overlap parameters to all RAG examples - Preserve original default values for each data source: - Document: 256/128 (optimized for general documents) - Email: 256/25 (smaller overlap for email threads) - Browser: 256/128 (standard for web content) - WeChat: 192/64 (smaller chunks for chat messages) - Make --file-types optional filter instead of restriction in document_rag - Update README to clarify interactive mode and parameter usage - Fix LLM default model documentation (gpt-4o, not gpt-4o-mini) * feat: Update documentation based on review feedback - Add MLX embedding example to README - Clarify examples/data content description (two papers, Pride and Prejudice, Chinese README) - Move chunk parameters to common parameters section - Remove duplicate chunk parameters from document-specific section * docs: Emphasize diverse data sources in examples/data description * fix: update default embedding models for better performance - Change WeChat, Browser, and Email RAG examples to use all-MiniLM-L6-v2 - Previous Qwen/Qwen3-Embedding-0.6B was too slow for these use cases - all-MiniLM-L6-v2 is a fast 384-dim model, ideal for large-scale personal data * add response highlight * change rebuild logic * fix some example * feat: check if k is larger than #docs * fix: WeChat history reader bugs and refactor wechat_rag to use unified architecture * fix email wrong -1 to process all file * refactor: reorgnize all examples/ and test/ * refactor: reorganize examples and add link checker * fix: add init.py * fix: handle certificate errors in link checker * fix wechat * merge * docs: update README to use proper module imports for apps - Change from 'python apps/xxx.py' to 'python -m apps.xxx' - More professional and pythonic module calling - Ensures proper module resolution and imports - Better separation between apps/ (production tools) and examples/ (demos) --------- Co-authored-by: yichuan520030910320 <yichuan_wang@berkeley.edu>
152 lines
5.0 KiB
Python
152 lines
5.0 KiB
Python
#!/usr/bin/env python3
|
|
"""Test only Faiss HNSW"""
|
|
|
|
import os
|
|
import sys
|
|
import time
|
|
|
|
import psutil
|
|
|
|
|
|
def get_memory_usage():
|
|
process = psutil.Process()
|
|
return process.memory_info().rss / 1024 / 1024
|
|
|
|
|
|
class MemoryTracker:
|
|
def __init__(self, name: str):
|
|
self.name = name
|
|
self.start_mem = get_memory_usage()
|
|
self.stages = []
|
|
|
|
def checkpoint(self, stage: str):
|
|
current_mem = get_memory_usage()
|
|
diff = current_mem - self.start_mem
|
|
print(f"[{self.name} - {stage}] Memory: {current_mem:.1f} MB (+{diff:.1f} MB)")
|
|
self.stages.append((stage, current_mem))
|
|
return current_mem
|
|
|
|
def summary(self):
|
|
peak_mem = max(mem for _, mem in self.stages)
|
|
print(f"Peak Memory: {peak_mem:.1f} MB")
|
|
return peak_mem
|
|
|
|
|
|
def main():
|
|
try:
|
|
import faiss
|
|
except ImportError:
|
|
print("Faiss is not installed.")
|
|
print(
|
|
"Please install it with `uv pip install faiss-cpu` and you can then run this script again"
|
|
)
|
|
sys.exit(1)
|
|
|
|
from llama_index.core import (
|
|
Settings,
|
|
SimpleDirectoryReader,
|
|
StorageContext,
|
|
VectorStoreIndex,
|
|
)
|
|
from llama_index.core.node_parser import SentenceSplitter
|
|
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
|
from llama_index.vector_stores.faiss import FaissVectorStore
|
|
|
|
tracker = MemoryTracker("Faiss HNSW")
|
|
tracker.checkpoint("Initial")
|
|
|
|
embed_model = HuggingFaceEmbedding(model_name="facebook/contriever")
|
|
Settings.embed_model = embed_model
|
|
tracker.checkpoint("After embedding model setup")
|
|
|
|
d = 768
|
|
faiss_index = faiss.IndexHNSWFlat(d, 32)
|
|
faiss_index.hnsw.efConstruction = 64
|
|
tracker.checkpoint("After Faiss index creation")
|
|
|
|
documents = SimpleDirectoryReader(
|
|
"data",
|
|
recursive=True,
|
|
encoding="utf-8",
|
|
required_exts=[".pdf", ".txt", ".md"],
|
|
).load_data()
|
|
tracker.checkpoint("After document loading")
|
|
|
|
# Parse into chunks using the same splitter as LEANN
|
|
node_parser = SentenceSplitter(
|
|
chunk_size=256, chunk_overlap=20, separator=" ", paragraph_separator="\n\n"
|
|
)
|
|
|
|
tracker.checkpoint("After text splitter setup")
|
|
|
|
# Check if index already exists and try to load it
|
|
index_loaded = False
|
|
if os.path.exists("./storage_faiss"):
|
|
print("Loading existing Faiss HNSW index...")
|
|
try:
|
|
# Use the correct Faiss loading pattern from the example
|
|
vector_store = FaissVectorStore.from_persist_dir("./storage_faiss")
|
|
storage_context = StorageContext.from_defaults(
|
|
vector_store=vector_store, persist_dir="./storage_faiss"
|
|
)
|
|
from llama_index.core import load_index_from_storage
|
|
|
|
index = load_index_from_storage(storage_context=storage_context)
|
|
print("Index loaded from ./storage_faiss")
|
|
tracker.checkpoint("After loading existing index")
|
|
index_loaded = True
|
|
except Exception as e:
|
|
print(f"Failed to load existing index: {e}")
|
|
print("Cleaning up corrupted index and building new one...")
|
|
# Clean up corrupted index
|
|
import shutil
|
|
|
|
if os.path.exists("./storage_faiss"):
|
|
shutil.rmtree("./storage_faiss")
|
|
|
|
if not index_loaded:
|
|
print("Building new Faiss HNSW index...")
|
|
|
|
# Use the correct Faiss building pattern from the example
|
|
vector_store = FaissVectorStore(faiss_index=faiss_index)
|
|
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
|
index = VectorStoreIndex.from_documents(
|
|
documents, storage_context=storage_context, transformations=[node_parser]
|
|
)
|
|
tracker.checkpoint("After index building")
|
|
|
|
# Save index to disk using the correct pattern
|
|
index.storage_context.persist(persist_dir="./storage_faiss")
|
|
tracker.checkpoint("After index saving")
|
|
|
|
# Measure runtime memory overhead
|
|
print("\nMeasuring runtime memory overhead...")
|
|
runtime_start_mem = get_memory_usage()
|
|
print(f"Before load memory: {runtime_start_mem:.1f} MB")
|
|
tracker.checkpoint("Before load memory")
|
|
|
|
query_engine = index.as_query_engine(similarity_top_k=20)
|
|
queries = [
|
|
"什么是盘古大模型以及盘古开发过程中遇到了什么阴暗面,任务令一般在什么城市颁发",
|
|
"What is LEANN and how does it work?",
|
|
"华为诺亚方舟实验室的主要研究内容",
|
|
]
|
|
|
|
for i, query in enumerate(queries):
|
|
start_time = time.time()
|
|
_ = query_engine.query(query)
|
|
query_time = time.time() - start_time
|
|
print(f"Query {i + 1} time: {query_time:.3f}s")
|
|
tracker.checkpoint(f"After query {i + 1}")
|
|
|
|
runtime_end_mem = get_memory_usage()
|
|
runtime_overhead = runtime_end_mem - runtime_start_mem
|
|
|
|
peak_memory = tracker.summary()
|
|
print(f"Peak Memory: {peak_memory:.1f} MB")
|
|
print(f"Runtime Memory Overhead: {runtime_overhead:.1f} MB")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|