This commit is contained in:
Alexia Jolicoeur-Martineau
2025-10-07 09:26:04 -04:00
commit 8120f2bdf7
39 changed files with 27428 additions and 0 deletions

View File

@@ -0,0 +1,140 @@
from typing import Optional
import math
import os
import csv
import json
import numpy as np
from argdantic import ArgParser
from pydantic import BaseModel
from tqdm import tqdm
from huggingface_hub import hf_hub_download
from common import PuzzleDatasetMetadata, dihedral_transform
CHARSET = "# SGo"
cli = ArgParser()
class DataProcessConfig(BaseModel):
source_repo: str = "sapientinc/maze-30x30-hard-1k"
output_dir: str = "data/maze-30x30-hard-1k"
subsample_size: Optional[int] = None
aug: bool = False
def convert_subset(set_name: str, config: DataProcessConfig):
# Read CSV
all_chars = set()
grid_size = None
inputs = []
labels = []
with open(hf_hub_download(config.source_repo, f"{set_name}.csv", repo_type="dataset"), newline="") as csvfile: # type: ignore
reader = csv.reader(csvfile)
next(reader) # Skip header
for source, q, a, rating in reader:
all_chars.update(q)
all_chars.update(a)
if grid_size is None:
n = int(len(q) ** 0.5)
grid_size = (n, n)
inputs.append(np.frombuffer(q.encode(), dtype=np.uint8).reshape(grid_size))
labels.append(np.frombuffer(a.encode(), dtype=np.uint8).reshape(grid_size))
# If subsample_size is specified for the training set,
# randomly sample the desired number of examples.
if set_name == "train" and config.subsample_size is not None:
total_samples = len(inputs)
if config.subsample_size < total_samples:
indices = np.random.choice(total_samples, size=config.subsample_size, replace=False)
inputs = [inputs[i] for i in indices]
labels = [labels[i] for i in indices]
# Generate dataset
results = {k: [] for k in ["inputs", "labels", "puzzle_identifiers", "puzzle_indices", "group_indices"]}
puzzle_id = 0
example_id = 0
results["puzzle_indices"].append(0)
results["group_indices"].append(0)
for inp, out in zip(tqdm(inputs), labels):
# Dihedral transformations for augmentation
for aug_idx in range(8 if (set_name == "train" and config.aug) else 1):
results["inputs"].append(dihedral_transform(inp, aug_idx))
results["labels"].append(dihedral_transform(out, aug_idx))
example_id += 1
puzzle_id += 1
results["puzzle_indices"].append(example_id)
results["puzzle_identifiers"].append(0)
# Push group
results["group_indices"].append(puzzle_id)
# Char mappings
assert len(all_chars - set(CHARSET)) == 0
char2id = np.zeros(256, np.uint8)
char2id[np.array(list(map(ord, CHARSET)))] = np.arange(len(CHARSET)) + 1
# To Numpy
def _seq_to_numpy(seq):
arr = np.vstack([char2id[s.reshape(-1)] for s in seq])
return arr
results = {
"inputs": _seq_to_numpy(results["inputs"]),
"labels": _seq_to_numpy(results["labels"]),
"group_indices": np.array(results["group_indices"], dtype=np.int32),
"puzzle_indices": np.array(results["puzzle_indices"], dtype=np.int32),
"puzzle_identifiers": np.array(results["puzzle_identifiers"], dtype=np.int32),
}
# Metadata
metadata = PuzzleDatasetMetadata(
seq_len=int(math.prod(grid_size)), # type: ignore
vocab_size=len(CHARSET) + 1, # PAD + Charset
pad_id=0,
ignore_label_id=0,
blank_identifier_id=0,
num_puzzle_identifiers=1,
total_groups=len(results["group_indices"]) - 1,
mean_puzzle_examples=1,
total_puzzles=len(results["group_indices"]) - 1,
sets=["all"]
)
# Save metadata as JSON.
save_dir = os.path.join(config.output_dir, set_name)
os.makedirs(save_dir, exist_ok=True)
with open(os.path.join(save_dir, "dataset.json"), "w") as f:
json.dump(metadata.model_dump(), f)
# Save data
for k, v in results.items():
np.save(os.path.join(save_dir, f"all__{k}.npy"), v)
# Save IDs mapping (for visualization only)
with open(os.path.join(config.output_dir, "identifiers.json"), "w") as f:
json.dump(["<blank>"], f)
@cli.command(singleton=True)
def preprocess_data(config: DataProcessConfig):
convert_subset("train", config)
convert_subset("test", config)
if __name__ == "__main__":
cli()