This commit is contained in:
Alexia Jolicoeur-Martineau
2025-10-07 09:26:04 -04:00
commit 8120f2bdf7
39 changed files with 27428 additions and 0 deletions

177
evaluators/arc.py Normal file
View File

@@ -0,0 +1,177 @@
from typing import Dict, Sequence, Optional
import os
import json
import torch
import numpy as np
from numba import njit
import torch.distributed as dist
from dataset.build_arc_dataset import inverse_aug, grid_hash, arc_grid_to_np
from dataset.common import PuzzleDatasetMetadata
@njit
def _crop(grid: np.ndarray):
"""Find maximum-sized rectangle without any EOS token inside. """
grid = grid.reshape(30, 30)
max_area = 0
max_size = (0, 0)
nr, nc = grid.shape
num_c = nc
for num_r in range(1, nr + 1):
# Scan for maximum c
for c in range(1, num_c + 1):
x = grid[num_r - 1, c - 1]
if (x < 2) | (x > 11):
num_c = c - 1
break
area = num_r * num_c
if area > max_area:
max_area = area
max_size = (num_r, num_c)
return (grid[:max_size[0], :max_size[1]] - 2).astype(np.uint8)
class ARC:
required_outputs = {"inputs", "puzzle_identifiers", "q_halt_logits", "preds"}
def __init__(self, data_path: str,
eval_metadata: PuzzleDatasetMetadata,
submission_K: int = 2,
pass_Ks: Sequence[int] = (1, 2, 5, 10, 100, 1000),
aggregated_voting: bool = True):
super().__init__()
self.pass_Ks = pass_Ks
self.submission_K = submission_K
self.aggregated_voting = aggregated_voting
self.blank_identifier_id = eval_metadata.blank_identifier_id
# Load identifiers and test puzzles
with open(os.path.join(data_path, "identifiers.json"), "r") as f:
self.identifier_map = json.load(f)
with open(os.path.join(data_path, "test_puzzles.json"), "r") as f:
self.test_puzzles = json.load(f)
# States
self._local_hmap = {}
self._local_preds = {}
def begin_eval(self):
if not self.aggregated_voting:
# Clear previous predictions
self._local_hmap = {}
self._local_preds = {}
def update_batch(self, batch: Dict[str, torch.Tensor], preds: Dict[str, torch.Tensor]):
# Collect required outputs to CPU
outputs = {}
q_values = None
for collection in (batch, preds):
for k, v in collection.items():
if k in self.required_outputs:
if k == "q_halt_logits":
q_values = v.to(torch.float64).sigmoid().cpu()
else:
outputs[k] = v.cpu()
assert q_values is not None
# Remove padding from outputs
mask = outputs["puzzle_identifiers"] != self.blank_identifier_id
outputs = {k: v[mask] for k, v in outputs.items()}
# Get predictions
for identifier, input, pred, q in zip(outputs["puzzle_identifiers"].numpy(), outputs["inputs"].numpy(), outputs["preds"].numpy(), q_values.numpy()):
name = self.identifier_map[identifier]
orig_name, _inverse_fn = inverse_aug(name)
input_hash = grid_hash(_inverse_fn(_crop(input)))
pred = _inverse_fn(_crop(pred))
assert np.all((pred >= 0) & (pred <= 9)), f"Puzzle {name}'s prediction out of 0-9 range." # Sanity check
# Store into local state
pred_hash = grid_hash(pred)
self._local_hmap[pred_hash] = pred
self._local_preds.setdefault(orig_name, {})
self._local_preds[orig_name].setdefault(input_hash, [])
self._local_preds[orig_name][input_hash].append((pred_hash, float(q)))
def result(self, save_path: Optional[str], rank: int, world_size: int, group: Optional[torch.distributed.ProcessGroup] = None) -> Optional[Dict[str, float]]:
# Gather predictions to rank 0 for voting
global_hmap_preds = [None for _ in range(world_size)] if rank == 0 else None
dist.gather_object((self._local_hmap, self._local_preds), global_hmap_preds, dst=0, group=group)
# Rank 0 logic
if rank != 0:
return
submission = {}
correct = [0.0 for _ in range(len(self.pass_Ks))]
for name, puzzle in self.test_puzzles.items():
# Process test examples in this puzzle
submission[name] = []
num_test_correct = [0 for _ in range(len(self.pass_Ks))]
for pair in puzzle["test"]:
input_hash = grid_hash(arc_grid_to_np(pair["input"]))
label_hash = grid_hash(arc_grid_to_np(pair["output"]))
p_map = {}
for hmap, preds in global_hmap_preds: # type: ignore
for h, q in preds.get(name, {}).get(input_hash, {}):
p_map.setdefault(h, [0, 0])
p_map[h][0] += 1
p_map[h][1] += q
if not len(p_map):
print (f"Puzzle {name} has no predictions.")
continue
for h, stats in p_map.items():
stats[1] /= stats[0]
p_map = sorted(p_map.items(), key=lambda kv: kv[1], reverse=True)
# vote for different Ks
for i, k in enumerate(self.pass_Ks):
ok = False
for h, stats in p_map[:k]:
ok |= h == label_hash
num_test_correct[i] += ok
# Query grids
pred_grids = []
for h, stats in p_map[:self.submission_K]:
for hmap, preds in global_hmap_preds: # type: ignore
if h in hmap:
pred_grids.append(hmap[h])
break
# Pad to K
while len(pred_grids) < self.submission_K:
pred_grids.append(pred_grids[0])
submission[name].append({f"attempt_{i + 1}": grid.tolist() for i, grid in enumerate(pred_grids)})
# Total correctness
for i in range(len(self.pass_Ks)):
correct[i] += num_test_correct[i] / len(puzzle["test"])
# Save submission
if save_path is not None:
with open(os.path.join(save_path, "submission.json"), "w") as f:
json.dump(submission, f)
# Final result
all_results = {f"ARC/pass@{k}": correct[i] / len(self.test_puzzles) for i, k in enumerate(self.pass_Ks)}
return all_results