upload
This commit is contained in:
294
models/recursive_reasoning/hrm.py
Normal file
294
models/recursive_reasoning/hrm.py
Normal file
@@ -0,0 +1,294 @@
|
||||
from typing import Tuple, List, Dict, Optional
|
||||
from dataclasses import dataclass
|
||||
import math
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
from pydantic import BaseModel
|
||||
|
||||
from models.common import trunc_normal_init_
|
||||
from models.layers import rms_norm, SwiGLU, Attention, RotaryEmbedding, CosSin, CastedEmbedding, CastedLinear
|
||||
from models.sparse_embedding import CastedSparseEmbedding
|
||||
|
||||
@dataclass
|
||||
class HierarchicalReasoningModel_ACTV1InnerCarry:
|
||||
z_H: torch.Tensor
|
||||
z_L: torch.Tensor
|
||||
|
||||
|
||||
@dataclass
|
||||
class HierarchicalReasoningModel_ACTV1Carry:
|
||||
inner_carry: HierarchicalReasoningModel_ACTV1InnerCarry
|
||||
|
||||
steps: torch.Tensor
|
||||
halted: torch.Tensor
|
||||
|
||||
current_data: Dict[str, torch.Tensor]
|
||||
|
||||
|
||||
class HierarchicalReasoningModel_ACTV1Config(BaseModel):
|
||||
batch_size: int
|
||||
seq_len: int
|
||||
puzzle_emb_ndim: int = 0
|
||||
num_puzzle_identifiers: int
|
||||
vocab_size: int
|
||||
|
||||
H_cycles: int
|
||||
L_cycles: int
|
||||
|
||||
H_layers: int
|
||||
L_layers: int
|
||||
|
||||
# Transformer config
|
||||
hidden_size: int
|
||||
expansion: float
|
||||
num_heads: int
|
||||
pos_encodings: str
|
||||
|
||||
rms_norm_eps: float = 1e-5
|
||||
rope_theta: float = 10000.0
|
||||
|
||||
# Halting Q-learning config
|
||||
halt_max_steps: int
|
||||
halt_exploration_prob: float
|
||||
|
||||
forward_dtype: str = "bfloat16"
|
||||
|
||||
# Alexia: added
|
||||
mlp_t: bool=False # use mlp on L instead of transformer
|
||||
|
||||
class HierarchicalReasoningModel_ACTV1Block(nn.Module):
|
||||
def __init__(self, config: HierarchicalReasoningModel_ACTV1Config) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.config = config
|
||||
if self.config.mlp_t:
|
||||
self.puzzle_emb_len = -(self.config.puzzle_emb_ndim // -self.config.hidden_size)
|
||||
self.mlp_t = SwiGLU(
|
||||
hidden_size=self.config.seq_len + self.puzzle_emb_len, # L
|
||||
expansion=config.expansion,
|
||||
)
|
||||
else:
|
||||
self.self_attn = Attention(
|
||||
hidden_size=config.hidden_size,
|
||||
head_dim=config.hidden_size // config.num_heads,
|
||||
num_heads=config.num_heads,
|
||||
num_key_value_heads=config.num_heads,
|
||||
causal=False
|
||||
)
|
||||
self.mlp = SwiGLU(
|
||||
hidden_size=config.hidden_size,
|
||||
expansion=config.expansion,
|
||||
)
|
||||
self.norm_eps = config.rms_norm_eps
|
||||
|
||||
def forward(self, cos_sin: CosSin, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
# B, L, D = hidden_states.shape
|
||||
# Post Norm
|
||||
if self.config.mlp_t:
|
||||
hidden_states = hidden_states.transpose(1,2)
|
||||
out = self.mlp_t(hidden_states)
|
||||
hidden_states = rms_norm(hidden_states + out, variance_epsilon=self.norm_eps)
|
||||
hidden_states = hidden_states.transpose(1,2)
|
||||
else:
|
||||
# Self Attention
|
||||
hidden_states = rms_norm(hidden_states + self.self_attn(cos_sin=cos_sin, hidden_states=hidden_states), variance_epsilon=self.norm_eps)
|
||||
# Fully Connected
|
||||
out = self.mlp(hidden_states)
|
||||
hidden_states = rms_norm(hidden_states + out, variance_epsilon=self.norm_eps)
|
||||
return hidden_states
|
||||
|
||||
class HierarchicalReasoningModel_ACTV1ReasoningModule(nn.Module):
|
||||
def __init__(self, layers: List[HierarchicalReasoningModel_ACTV1Block]):
|
||||
super().__init__()
|
||||
|
||||
self.layers = torch.nn.ModuleList(layers)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor, input_injection: torch.Tensor, **kwargs) -> torch.Tensor:
|
||||
# Input injection (add)
|
||||
hidden_states = hidden_states + input_injection
|
||||
# Layers
|
||||
for layer in self.layers:
|
||||
hidden_states = layer(hidden_states=hidden_states, **kwargs)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class HierarchicalReasoningModel_ACTV1_Inner(nn.Module):
|
||||
def __init__(self, config: HierarchicalReasoningModel_ACTV1Config) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.forward_dtype = getattr(torch, self.config.forward_dtype)
|
||||
|
||||
# I/O
|
||||
self.embed_scale = math.sqrt(self.config.hidden_size)
|
||||
embed_init_std = 1.0 / self.embed_scale
|
||||
|
||||
self.embed_tokens = CastedEmbedding(self.config.vocab_size, self.config.hidden_size, init_std=embed_init_std, cast_to=self.forward_dtype)
|
||||
self.lm_head = CastedLinear(self.config.hidden_size, self.config.vocab_size, bias=False)
|
||||
self.q_head = CastedLinear(self.config.hidden_size, 2, bias=True)
|
||||
|
||||
self.puzzle_emb_len = -(self.config.puzzle_emb_ndim // -self.config.hidden_size) # ceil div
|
||||
if self.config.puzzle_emb_ndim > 0:
|
||||
# Zero init puzzle embeddings
|
||||
self.puzzle_emb = CastedSparseEmbedding(self.config.num_puzzle_identifiers, self.config.puzzle_emb_ndim,
|
||||
batch_size=self.config.batch_size, init_std=0, cast_to=self.forward_dtype)
|
||||
|
||||
# LM Blocks
|
||||
if self.config.pos_encodings == "rope":
|
||||
self.rotary_emb = RotaryEmbedding(dim=self.config.hidden_size // self.config.num_heads,
|
||||
max_position_embeddings=self.config.seq_len + self.puzzle_emb_len,
|
||||
base=self.config.rope_theta)
|
||||
elif self.config.pos_encodings == "learned":
|
||||
self.embed_pos = CastedEmbedding(self.config.seq_len + self.puzzle_emb_len, self.config.hidden_size, init_std=embed_init_std, cast_to=self.forward_dtype)
|
||||
else:
|
||||
pass
|
||||
|
||||
# Reasoning Layers
|
||||
self.H_level = HierarchicalReasoningModel_ACTV1ReasoningModule(layers=[HierarchicalReasoningModel_ACTV1Block(self.config) for _i in range(self.config.H_layers)])
|
||||
self.L_level = HierarchicalReasoningModel_ACTV1ReasoningModule(layers=[HierarchicalReasoningModel_ACTV1Block(self.config) for _i in range(self.config.L_layers)])
|
||||
|
||||
# Initial states
|
||||
self.H_init = nn.Buffer(trunc_normal_init_(torch.empty(self.config.hidden_size, dtype=self.forward_dtype), std=1), persistent=True)
|
||||
self.L_init = nn.Buffer(trunc_normal_init_(torch.empty(self.config.hidden_size, dtype=self.forward_dtype), std=1), persistent=True)
|
||||
|
||||
# Q head special init
|
||||
# Init Q to (almost) zero for faster learning during bootstrapping
|
||||
with torch.no_grad():
|
||||
self.q_head.weight.zero_()
|
||||
self.q_head.bias.fill_(-5) # type: ignore
|
||||
|
||||
def _input_embeddings(self, input: torch.Tensor, puzzle_identifiers: torch.Tensor):
|
||||
# Token embedding
|
||||
embedding = self.embed_tokens(input.to(torch.int32))
|
||||
|
||||
# Puzzle embeddings
|
||||
if self.config.puzzle_emb_ndim > 0:
|
||||
puzzle_embedding = self.puzzle_emb(puzzle_identifiers)
|
||||
|
||||
pad_count = self.puzzle_emb_len * self.config.hidden_size - puzzle_embedding.shape[-1]
|
||||
if pad_count > 0:
|
||||
puzzle_embedding = F.pad(puzzle_embedding, (0, pad_count))
|
||||
|
||||
embedding = torch.cat((puzzle_embedding.view(-1, self.puzzle_emb_len, self.config.hidden_size), embedding), dim=-2)
|
||||
|
||||
# Position embeddings
|
||||
if self.config.pos_encodings == "learned":
|
||||
# scale by 1/sqrt(2) to maintain forward variance
|
||||
embedding = 0.707106781 * (embedding + self.embed_pos.embedding_weight.to(self.forward_dtype))
|
||||
|
||||
# Scale
|
||||
return self.embed_scale * embedding
|
||||
|
||||
def empty_carry(self, batch_size: int):
|
||||
return HierarchicalReasoningModel_ACTV1InnerCarry(
|
||||
z_H=torch.empty(batch_size, self.config.seq_len + self.puzzle_emb_len, self.config.hidden_size, dtype=self.forward_dtype),
|
||||
z_L=torch.empty(batch_size, self.config.seq_len + self.puzzle_emb_len, self.config.hidden_size, dtype=self.forward_dtype),
|
||||
)
|
||||
|
||||
def reset_carry(self, reset_flag: torch.Tensor, carry: HierarchicalReasoningModel_ACTV1InnerCarry):
|
||||
return HierarchicalReasoningModel_ACTV1InnerCarry(
|
||||
z_H=torch.where(reset_flag.view(-1, 1, 1), self.H_init, carry.z_H),
|
||||
z_L=torch.where(reset_flag.view(-1, 1, 1), self.L_init, carry.z_L),
|
||||
)
|
||||
|
||||
def forward(self, carry: HierarchicalReasoningModel_ACTV1InnerCarry, batch: Dict[str, torch.Tensor]) -> Tuple[HierarchicalReasoningModel_ACTV1InnerCarry, torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
||||
seq_info = dict(
|
||||
cos_sin=self.rotary_emb() if hasattr(self, "rotary_emb") else None,
|
||||
)
|
||||
|
||||
# Input encoding
|
||||
input_embeddings = self._input_embeddings(batch["inputs"], batch["puzzle_identifiers"])
|
||||
|
||||
# Forward iterations
|
||||
with torch.no_grad():
|
||||
z_H, z_L = carry.z_H, carry.z_L
|
||||
for _H_step in range(self.config.H_cycles):
|
||||
for _L_step in range(self.config.L_cycles):
|
||||
if not ((_H_step == self.config.H_cycles - 1) and (_L_step == self.config.L_cycles - 1)):
|
||||
z_L = self.L_level(z_L, z_H + input_embeddings, **seq_info)
|
||||
if not (_H_step == self.config.H_cycles - 1):
|
||||
z_H = self.H_level(z_H, z_L, **seq_info)
|
||||
assert not z_H.requires_grad and not z_L.requires_grad
|
||||
# 1-step grad
|
||||
z_L = self.L_level(z_L, z_H + input_embeddings, **seq_info)
|
||||
z_H = self.H_level(z_H, z_L, **seq_info)
|
||||
|
||||
# LM Outputs
|
||||
new_carry = HierarchicalReasoningModel_ACTV1InnerCarry(z_H=z_H.detach(), z_L=z_L.detach()) # New carry no grad
|
||||
output = self.lm_head(z_H)[:, self.puzzle_emb_len:]
|
||||
|
||||
# Q head
|
||||
q_logits = self.q_head(z_H[:, 0]).to(torch.float32)
|
||||
|
||||
return new_carry, output, (q_logits[..., 0], q_logits[..., 1])
|
||||
|
||||
|
||||
class HierarchicalReasoningModel_ACTV1(nn.Module):
|
||||
"""ACT wrapper."""
|
||||
|
||||
def __init__(self, config_dict: dict):
|
||||
super().__init__()
|
||||
self.config = HierarchicalReasoningModel_ACTV1Config(**config_dict)
|
||||
self.inner = HierarchicalReasoningModel_ACTV1_Inner(self.config)
|
||||
|
||||
@property
|
||||
def puzzle_emb(self):
|
||||
return self.inner.puzzle_emb
|
||||
|
||||
def initial_carry(self, batch: Dict[str, torch.Tensor]):
|
||||
batch_size = batch["inputs"].shape[0]
|
||||
|
||||
return HierarchicalReasoningModel_ACTV1Carry(
|
||||
inner_carry=self.inner.empty_carry(batch_size), # Empty is expected, it will be reseted in first pass as all sequences are halted.
|
||||
|
||||
steps=torch.zeros((batch_size, ), dtype=torch.int32),
|
||||
halted=torch.ones((batch_size, ), dtype=torch.bool), # Default to halted
|
||||
|
||||
current_data={k: torch.empty_like(v) for k, v in batch.items()}
|
||||
)
|
||||
|
||||
def forward(self, carry: HierarchicalReasoningModel_ACTV1Carry, batch: Dict[str, torch.Tensor]) -> Tuple[HierarchicalReasoningModel_ACTV1Carry, Dict[str, torch.Tensor]]:
|
||||
# Update data, carry (removing halted sequences)
|
||||
new_inner_carry = self.inner.reset_carry(carry.halted, carry.inner_carry)
|
||||
|
||||
new_steps = torch.where(carry.halted, 0, carry.steps)
|
||||
|
||||
new_current_data = {k: torch.where(carry.halted.view((-1, ) + (1, ) * (batch[k].ndim - 1)), batch[k], v) for k, v in carry.current_data.items()}
|
||||
|
||||
# Forward inner model
|
||||
new_inner_carry, logits, (q_halt_logits, q_continue_logits) = self.inner(new_inner_carry, new_current_data)
|
||||
|
||||
outputs = {
|
||||
"logits": logits,
|
||||
"q_halt_logits": q_halt_logits,
|
||||
"q_continue_logits": q_continue_logits
|
||||
}
|
||||
|
||||
with torch.no_grad():
|
||||
# Step
|
||||
new_steps = new_steps + 1
|
||||
is_last_step = new_steps >= self.config.halt_max_steps
|
||||
|
||||
halted = is_last_step
|
||||
|
||||
# if training, and ACT is enabled
|
||||
if self.training and (self.config.halt_max_steps > 1):
|
||||
# Halt signal
|
||||
# NOTE: During evaluation, always use max steps, this is to guarantee the same halting steps inside a batch for batching purposes
|
||||
halted = halted | (q_halt_logits > q_continue_logits)
|
||||
|
||||
# Exploration
|
||||
min_halt_steps = (torch.rand_like(q_halt_logits) < self.config.halt_exploration_prob) * torch.randint_like(new_steps, low=2, high=self.config.halt_max_steps + 1)
|
||||
|
||||
halted = halted & (new_steps >= min_halt_steps)
|
||||
|
||||
# Compute target Q
|
||||
# NOTE: No replay buffer and target networks for computing target Q-value.
|
||||
# As batch_size is large, there're many parallel envs.
|
||||
# Similar concept as PQN https://arxiv.org/abs/2407.04811
|
||||
next_q_halt_logits, next_q_continue_logits = self.inner(new_inner_carry, new_current_data)[-1]
|
||||
|
||||
outputs["target_q_continue"] = torch.sigmoid(torch.where(is_last_step, next_q_halt_logits, torch.maximum(next_q_halt_logits, next_q_continue_logits)))
|
||||
|
||||
return HierarchicalReasoningModel_ACTV1Carry(new_inner_carry, new_steps, halted, new_current_data), outputs
|
||||
342
models/recursive_reasoning/transformers_baseline.py
Normal file
342
models/recursive_reasoning/transformers_baseline.py
Normal file
@@ -0,0 +1,342 @@
|
||||
"""
|
||||
HRM ACT V2: Transformer Baseline for Architecture Ablation
|
||||
|
||||
This is an architecture ablation of the Hierarchical Reasoning Model (HRM).
|
||||
Key changes from V1:
|
||||
1. REMOVED hierarchical split (no separate H and L levels)
|
||||
2. REMOVED inner cycles (no H_cycles/L_cycles loops within reasoning)
|
||||
3. KEPT ACT outer loop structure intact
|
||||
4. KEPT all data preprocessing, embeddings, and evaluation infrastructure
|
||||
|
||||
Architecture: Single-level transformer that processes the full 30x30 grid as a
|
||||
900-token sequence, with the same positional encodings and sparse embeddings as V1.
|
||||
|
||||
"""
|
||||
|
||||
from typing import Tuple, List, Dict, Optional
|
||||
from dataclasses import dataclass
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
from pydantic import BaseModel
|
||||
|
||||
from models.common import trunc_normal_init_
|
||||
from models.layers import rms_norm, SwiGLU, Attention, RotaryEmbedding, CosSin, CastedEmbedding, CastedLinear
|
||||
from models.sparse_embedding import CastedSparseEmbedding
|
||||
|
||||
|
||||
@dataclass
|
||||
class Model_ACTV2InnerCarry:
|
||||
z_H: torch.Tensor
|
||||
|
||||
|
||||
@dataclass
|
||||
class Model_ACTV2Carry:
|
||||
inner_carry: Model_ACTV2InnerCarry
|
||||
|
||||
steps: torch.Tensor
|
||||
halted: torch.Tensor
|
||||
|
||||
current_data: Dict[str, torch.Tensor]
|
||||
|
||||
|
||||
class Model_ACTV2Config(BaseModel):
|
||||
batch_size: int
|
||||
seq_len: int
|
||||
puzzle_emb_ndim: int = 0
|
||||
num_puzzle_identifiers: int
|
||||
vocab_size: int
|
||||
|
||||
H_cycles: int
|
||||
|
||||
H_layers: int
|
||||
|
||||
# Transformer config
|
||||
hidden_size: int
|
||||
expansion: float
|
||||
num_heads: int
|
||||
pos_encodings: str
|
||||
|
||||
rms_norm_eps: float = 1e-5
|
||||
rope_theta: float = 10000.0
|
||||
|
||||
# Halting Q-learning config
|
||||
halt_max_steps: int
|
||||
halt_exploration_prob: float
|
||||
act_enabled: bool = True # If False, always run halt_max_steps (no early stopping during training)
|
||||
act_inference: bool = False # If True, use adaptive computation during inference
|
||||
|
||||
forward_dtype: str = "bfloat16"
|
||||
|
||||
|
||||
class Model_ACTV2Block(nn.Module):
|
||||
def __init__(self, config: Model_ACTV2Config) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.self_attn = Attention(
|
||||
hidden_size=config.hidden_size,
|
||||
head_dim=config.hidden_size // config.num_heads,
|
||||
num_heads=config.num_heads,
|
||||
num_key_value_heads=config.num_heads,
|
||||
causal=False,
|
||||
)
|
||||
self.mlp = SwiGLU(
|
||||
hidden_size=config.hidden_size,
|
||||
expansion=config.expansion,
|
||||
)
|
||||
self.norm_eps = config.rms_norm_eps
|
||||
|
||||
def forward(self, cos_sin: CosSin, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
# Post Norm
|
||||
# Self Attention
|
||||
hidden_states = rms_norm(
|
||||
hidden_states + self.self_attn(cos_sin=cos_sin, hidden_states=hidden_states),
|
||||
variance_epsilon=self.norm_eps,
|
||||
)
|
||||
# Fully Connected
|
||||
hidden_states = rms_norm(hidden_states + self.mlp(hidden_states), variance_epsilon=self.norm_eps)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class Model_ACTV2ReasoningModule(nn.Module):
|
||||
def __init__(self, layers: List[Model_ACTV2Block]):
|
||||
super().__init__()
|
||||
|
||||
self.layers = torch.nn.ModuleList(layers)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor, input_injection: torch.Tensor, **kwargs) -> torch.Tensor:
|
||||
# Input injection (add)
|
||||
hidden_states = hidden_states + input_injection
|
||||
# Layers
|
||||
for layer in self.layers:
|
||||
hidden_states = layer(hidden_states=hidden_states, **kwargs)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class Model_ACTV2_Inner(nn.Module):
|
||||
def __init__(self, config: Model_ACTV2Config) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.forward_dtype = getattr(torch, self.config.forward_dtype)
|
||||
|
||||
# I/O
|
||||
self.embed_scale = math.sqrt(self.config.hidden_size)
|
||||
embed_init_std = 1.0 / self.embed_scale
|
||||
|
||||
self.embed_tokens = CastedEmbedding(
|
||||
self.config.vocab_size,
|
||||
self.config.hidden_size,
|
||||
init_std=embed_init_std,
|
||||
cast_to=self.forward_dtype,
|
||||
)
|
||||
self.lm_head = CastedLinear(self.config.hidden_size, self.config.vocab_size, bias=False)
|
||||
self.q_head = CastedLinear(self.config.hidden_size, 2, bias=True)
|
||||
|
||||
self.puzzle_emb_len = -(self.config.puzzle_emb_ndim // -self.config.hidden_size) # ceil div
|
||||
if self.config.puzzle_emb_ndim > 0:
|
||||
# Zero init puzzle embeddings
|
||||
self.puzzle_emb = CastedSparseEmbedding(
|
||||
self.config.num_puzzle_identifiers,
|
||||
self.config.puzzle_emb_ndim,
|
||||
batch_size=self.config.batch_size,
|
||||
init_std=0,
|
||||
cast_to=self.forward_dtype,
|
||||
)
|
||||
|
||||
# LM Blocks
|
||||
if self.config.pos_encodings == "rope":
|
||||
self.rotary_emb = RotaryEmbedding(
|
||||
dim=self.config.hidden_size // self.config.num_heads,
|
||||
max_position_embeddings=self.config.seq_len + self.puzzle_emb_len,
|
||||
base=self.config.rope_theta,
|
||||
)
|
||||
elif self.config.pos_encodings == "learned":
|
||||
self.embed_pos = CastedEmbedding(
|
||||
self.config.seq_len + self.puzzle_emb_len,
|
||||
self.config.hidden_size,
|
||||
init_std=embed_init_std,
|
||||
cast_to=self.forward_dtype,
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
# Reasoning Layers
|
||||
self.H_level = Model_ACTV2ReasoningModule(
|
||||
layers=[Model_ACTV2Block(self.config) for _i in range(self.config.H_layers)]
|
||||
)
|
||||
|
||||
# Initial states
|
||||
self.H_init = nn.Buffer(
|
||||
trunc_normal_init_(torch.empty(self.config.hidden_size, dtype=self.forward_dtype), std=1),
|
||||
persistent=True,
|
||||
)
|
||||
|
||||
# Q head special init
|
||||
# Init Q to (almost) zero for faster learning during bootstrapping
|
||||
with torch.no_grad():
|
||||
self.q_head.weight.zero_()
|
||||
self.q_head.bias.fill_(-5) # type: ignore
|
||||
|
||||
def _input_embeddings(self, input: torch.Tensor, puzzle_identifiers: torch.Tensor):
|
||||
# Token embedding
|
||||
embedding = self.embed_tokens(input.to(torch.int32))
|
||||
|
||||
# Puzzle embeddings
|
||||
if self.config.puzzle_emb_ndim > 0:
|
||||
puzzle_embedding = self.puzzle_emb(puzzle_identifiers)
|
||||
|
||||
pad_count = self.puzzle_emb_len * self.config.hidden_size - puzzle_embedding.shape[-1]
|
||||
if pad_count > 0:
|
||||
puzzle_embedding = F.pad(puzzle_embedding, (0, pad_count))
|
||||
|
||||
embedding = torch.cat(
|
||||
(puzzle_embedding.view(-1, self.puzzle_emb_len, self.config.hidden_size), embedding), dim=-2
|
||||
)
|
||||
|
||||
# Position embeddings
|
||||
if self.config.pos_encodings == "learned":
|
||||
# scale by 1/sqrt(2) to maintain forward variance
|
||||
embedding = 0.707106781 * (embedding + self.embed_pos.embedding_weight.to(self.forward_dtype))
|
||||
|
||||
# Scale
|
||||
return self.embed_scale * embedding
|
||||
|
||||
def empty_carry(self, batch_size: int):
|
||||
return Model_ACTV2InnerCarry(
|
||||
z_H=torch.empty(
|
||||
batch_size,
|
||||
self.config.seq_len + self.puzzle_emb_len,
|
||||
self.config.hidden_size,
|
||||
dtype=self.forward_dtype,
|
||||
),
|
||||
)
|
||||
|
||||
def reset_carry(self, reset_flag: torch.Tensor, carry: Model_ACTV2InnerCarry):
|
||||
return Model_ACTV2InnerCarry(
|
||||
z_H=torch.where(reset_flag.view(-1, 1, 1), self.H_init, carry.z_H),
|
||||
)
|
||||
|
||||
def forward(
|
||||
self, carry: Model_ACTV2InnerCarry, batch: Dict[str, torch.Tensor]
|
||||
) -> Tuple[Model_ACTV2InnerCarry, torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
||||
seq_info = dict(
|
||||
cos_sin=self.rotary_emb() if hasattr(self, "rotary_emb") else None,
|
||||
)
|
||||
|
||||
# Input encoding
|
||||
input_embeddings = self._input_embeddings(batch["inputs"], batch["puzzle_identifiers"])
|
||||
|
||||
# 1-step grad
|
||||
z_H = self.H_level(carry.z_H, input_embeddings, **seq_info)
|
||||
|
||||
# LM Outputs
|
||||
new_carry = Model_ACTV2InnerCarry(
|
||||
z_H=z_H.detach(),
|
||||
) # New carry no grad
|
||||
output = self.lm_head(z_H)[:, self.puzzle_emb_len :]
|
||||
|
||||
# Q head
|
||||
q_logits = self.q_head(z_H[:, 0]).to(torch.float32)
|
||||
|
||||
return new_carry, output, (q_logits[..., 0], q_logits[..., 1])
|
||||
|
||||
|
||||
class Model_ACTV2(nn.Module):
|
||||
"""ACT wrapper."""
|
||||
|
||||
def __init__(self, config_dict: dict):
|
||||
super().__init__()
|
||||
self.config = Model_ACTV2Config(**config_dict)
|
||||
self.inner = Model_ACTV2_Inner(self.config)
|
||||
|
||||
@property
|
||||
def puzzle_emb(self):
|
||||
return self.inner.puzzle_emb
|
||||
|
||||
def initial_carry(self, batch: Dict[str, torch.Tensor]):
|
||||
batch_size = batch["inputs"].shape[0]
|
||||
|
||||
return Model_ACTV2Carry(
|
||||
inner_carry=self.inner.empty_carry(
|
||||
batch_size
|
||||
), # Empty is expected, it will be reseted in first pass as all sequences are halted.
|
||||
steps=torch.zeros((batch_size,), dtype=torch.int32),
|
||||
halted=torch.ones((batch_size,), dtype=torch.bool), # Default to halted
|
||||
current_data={k: torch.empty_like(v) for k, v in batch.items()},
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
carry: Model_ACTV2Carry,
|
||||
batch: Dict[str, torch.Tensor],
|
||||
compute_target_q: bool = False,
|
||||
) -> Tuple[Model_ACTV2Carry, Dict[str, torch.Tensor]]:
|
||||
# Update data, carry (removing halted sequences)
|
||||
new_inner_carry = self.inner.reset_carry(carry.halted, carry.inner_carry)
|
||||
|
||||
new_steps = torch.where(carry.halted, 0, carry.steps)
|
||||
|
||||
new_current_data = {
|
||||
k: torch.where(carry.halted.view((-1,) + (1,) * (batch[k].ndim - 1)), batch[k], v)
|
||||
for k, v in carry.current_data.items()
|
||||
}
|
||||
|
||||
# Forward inner model
|
||||
new_inner_carry, logits, (q_halt_logits, q_continue_logits) = self.inner(
|
||||
new_inner_carry, new_current_data
|
||||
)
|
||||
|
||||
outputs = {"logits": logits, "q_halt_logits": q_halt_logits, "q_continue_logits": q_continue_logits}
|
||||
|
||||
with torch.no_grad():
|
||||
# Step
|
||||
new_steps = new_steps + 1
|
||||
is_last_step = new_steps >= self.config.halt_max_steps
|
||||
|
||||
halted = is_last_step
|
||||
|
||||
# Check if adaptive computation should be used
|
||||
use_adaptive = (self.config.halt_max_steps > 1) and (
|
||||
(self.training and self.config.act_enabled)
|
||||
or (not self.training and self.config.act_inference)
|
||||
)
|
||||
|
||||
if use_adaptive:
|
||||
# Halt signal based on Q-values (but always halt at max steps)
|
||||
q_halt_signal = q_halt_logits > q_continue_logits
|
||||
halted = halted | q_halt_signal
|
||||
|
||||
# Store actual steps used for logging (only during inference)
|
||||
if not self.training:
|
||||
outputs["actual_steps"] = new_steps.float()
|
||||
|
||||
# Exploration (only during training)
|
||||
if self.training:
|
||||
min_halt_steps = (
|
||||
torch.rand_like(q_halt_logits) < self.config.halt_exploration_prob
|
||||
) * torch.randint_like(new_steps, low=2, high=self.config.halt_max_steps + 1)
|
||||
halted = halted & (new_steps >= min_halt_steps)
|
||||
|
||||
# Compute target Q (only during training)
|
||||
# NOTE: No replay buffer and target networks for computing target Q-value.
|
||||
# As batch_size is large, there're many parallel envs.
|
||||
# Similar concept as PQN https://arxiv.org/abs/2407.04811
|
||||
if self.training and compute_target_q:
|
||||
next_q_halt_logits, next_q_continue_logits = self.inner(
|
||||
new_inner_carry, new_current_data
|
||||
)[-1]
|
||||
|
||||
outputs["target_q_continue"] = torch.sigmoid(
|
||||
torch.where(
|
||||
is_last_step,
|
||||
next_q_halt_logits,
|
||||
torch.maximum(next_q_halt_logits, next_q_continue_logits),
|
||||
)
|
||||
)
|
||||
|
||||
return Model_ACTV2Carry(
|
||||
new_inner_carry, new_steps, halted, new_current_data
|
||||
), outputs
|
||||
297
models/recursive_reasoning/trm.py
Normal file
297
models/recursive_reasoning/trm.py
Normal file
@@ -0,0 +1,297 @@
|
||||
from typing import Tuple, List, Dict, Optional
|
||||
from dataclasses import dataclass
|
||||
import math
|
||||
import torch
|
||||
import copy
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
from pydantic import BaseModel
|
||||
import random
|
||||
from models.common import trunc_normal_init_
|
||||
from models.layers import rms_norm, LinearSwish, SwiGLU, Attention, RotaryEmbedding, CosSin, CastedEmbedding, CastedLinear
|
||||
from models.sparse_embedding import CastedSparseEmbedding
|
||||
|
||||
IGNORE_LABEL_ID = -100
|
||||
|
||||
@dataclass
|
||||
class TinyRecursiveReasoningModel_ACTV1InnerCarry:
|
||||
z_H: torch.Tensor
|
||||
z_L: torch.Tensor
|
||||
|
||||
|
||||
@dataclass
|
||||
class TinyRecursiveReasoningModel_ACTV1Carry:
|
||||
inner_carry: TinyRecursiveReasoningModel_ACTV1InnerCarry
|
||||
|
||||
steps: torch.Tensor
|
||||
halted: torch.Tensor
|
||||
|
||||
current_data: Dict[str, torch.Tensor]
|
||||
|
||||
|
||||
class TinyRecursiveReasoningModel_ACTV1Config(BaseModel):
|
||||
batch_size: int
|
||||
seq_len: int
|
||||
puzzle_emb_ndim: int = 0
|
||||
num_puzzle_identifiers: int
|
||||
vocab_size: int
|
||||
|
||||
H_cycles: int
|
||||
L_cycles: int
|
||||
|
||||
H_layers: int # ignored
|
||||
L_layers: int
|
||||
|
||||
# Transformer config
|
||||
hidden_size: int
|
||||
expansion: float
|
||||
num_heads: int
|
||||
pos_encodings: str
|
||||
|
||||
rms_norm_eps: float = 1e-5
|
||||
rope_theta: float = 10000.0
|
||||
|
||||
# Halting Q-learning config
|
||||
halt_max_steps: int
|
||||
halt_exploration_prob: float
|
||||
|
||||
forward_dtype: str = "bfloat16"
|
||||
|
||||
# Alexia: added
|
||||
mlp_t: bool = False # use mlp on L instead of transformer
|
||||
puzzle_emb_len: int = 16 # if non-zero, its specified to this value
|
||||
no_ACT_continue: bool = True # No continue ACT loss, only use the sigmoid of the halt which makes much more sense
|
||||
|
||||
class TinyRecursiveReasoningModel_ACTV1Block(nn.Module):
|
||||
def __init__(self, config: TinyRecursiveReasoningModel_ACTV1Config) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.config = config
|
||||
if self.config.mlp_t:
|
||||
self.puzzle_emb_len = -(self.config.puzzle_emb_ndim // -self.config.hidden_size) if self.config.puzzle_emb_len == 0 else self.config.puzzle_emb_len
|
||||
self.mlp_t = SwiGLU(
|
||||
hidden_size=self.config.seq_len + self.puzzle_emb_len, # L
|
||||
expansion=config.expansion,
|
||||
)
|
||||
else:
|
||||
self.self_attn = Attention(
|
||||
hidden_size=config.hidden_size,
|
||||
head_dim=config.hidden_size // config.num_heads,
|
||||
num_heads=config.num_heads,
|
||||
num_key_value_heads=config.num_heads,
|
||||
causal=False
|
||||
)
|
||||
self.mlp = SwiGLU(
|
||||
hidden_size=config.hidden_size,
|
||||
expansion=config.expansion,
|
||||
)
|
||||
self.norm_eps = config.rms_norm_eps
|
||||
|
||||
def forward(self, cos_sin: CosSin, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
# B, L, D = hidden_states.shape
|
||||
# Post Norm
|
||||
if self.config.mlp_t:
|
||||
hidden_states = hidden_states.transpose(1,2)
|
||||
out = self.mlp_t(hidden_states)
|
||||
hidden_states = rms_norm(hidden_states + out, variance_epsilon=self.norm_eps)
|
||||
hidden_states = hidden_states.transpose(1,2)
|
||||
else:
|
||||
# Self Attention
|
||||
hidden_states = rms_norm(hidden_states + self.self_attn(cos_sin=cos_sin, hidden_states=hidden_states), variance_epsilon=self.norm_eps)
|
||||
# Fully Connected
|
||||
out = self.mlp(hidden_states)
|
||||
hidden_states = rms_norm(hidden_states + out, variance_epsilon=self.norm_eps)
|
||||
return hidden_states
|
||||
|
||||
class TinyRecursiveReasoningModel_ACTV1ReasoningModule(nn.Module):
|
||||
def __init__(self, layers: List[TinyRecursiveReasoningModel_ACTV1Block]):
|
||||
super().__init__()
|
||||
self.layers = torch.nn.ModuleList(layers)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor, input_injection: torch.Tensor, **kwargs) -> torch.Tensor:
|
||||
hidden_states = hidden_states + input_injection
|
||||
for layer in self.layers:
|
||||
hidden_states = layer(hidden_states=hidden_states, **kwargs)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class TinyRecursiveReasoningModel_ACTV1_Inner(nn.Module):
|
||||
def __init__(self, config: TinyRecursiveReasoningModel_ACTV1Config) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.forward_dtype = getattr(torch, self.config.forward_dtype)
|
||||
|
||||
# I/O
|
||||
|
||||
self.embed_scale = math.sqrt(self.config.hidden_size)
|
||||
embed_init_std = 1.0 / self.embed_scale
|
||||
|
||||
self.embed_tokens = CastedEmbedding(self.config.vocab_size, self.config.hidden_size, init_std=embed_init_std, cast_to=self.forward_dtype)
|
||||
self.lm_head = CastedLinear(self.config.hidden_size, self.config.vocab_size, bias=False)
|
||||
self.q_head = CastedLinear(self.config.hidden_size, 2, bias=True)
|
||||
|
||||
self.puzzle_emb_len = -(self.config.puzzle_emb_ndim // -self.config.hidden_size) if self.config.puzzle_emb_len == 0 else self.config.puzzle_emb_len # ceil div
|
||||
if self.config.puzzle_emb_ndim > 0:
|
||||
# Zero init puzzle embeddings
|
||||
self.puzzle_emb = CastedSparseEmbedding(self.config.num_puzzle_identifiers, self.config.puzzle_emb_ndim,
|
||||
batch_size=self.config.batch_size, init_std=0, cast_to=self.forward_dtype)
|
||||
|
||||
# LM Blocks
|
||||
if self.config.pos_encodings == "rope":
|
||||
self.rotary_emb = RotaryEmbedding(dim=self.config.hidden_size // self.config.num_heads,
|
||||
max_position_embeddings=self.config.seq_len + self.puzzle_emb_len,
|
||||
base=self.config.rope_theta)
|
||||
elif self.config.pos_encodings == "learned":
|
||||
self.embed_pos = CastedEmbedding(self.config.seq_len + self.puzzle_emb_len, self.config.hidden_size, init_std=embed_init_std, cast_to=self.forward_dtype)
|
||||
else:
|
||||
pass
|
||||
|
||||
# Reasoning Layers
|
||||
self.L_level = TinyRecursiveReasoningModel_ACTV1ReasoningModule(layers=[TinyRecursiveReasoningModel_ACTV1Block(self.config) for _i in range(self.config.L_layers)])
|
||||
|
||||
# Initial states
|
||||
self.H_init = nn.Buffer(trunc_normal_init_(torch.empty(self.config.hidden_size, dtype=self.forward_dtype), std=1), persistent=True)
|
||||
self.L_init = nn.Buffer(trunc_normal_init_(torch.empty(self.config.hidden_size, dtype=self.forward_dtype), std=1), persistent=True)
|
||||
|
||||
# Q head special init
|
||||
# Init Q to (almost) zero for faster learning during bootstrapping
|
||||
with torch.no_grad():
|
||||
self.q_head.weight.zero_()
|
||||
self.q_head.bias.fill_(-5) # type: ignore
|
||||
|
||||
def _input_embeddings(self, input: torch.Tensor, puzzle_identifiers: torch.Tensor):
|
||||
# Token embedding
|
||||
embedding = self.embed_tokens(input.to(torch.int32))
|
||||
|
||||
# Puzzle embeddings
|
||||
if self.config.puzzle_emb_ndim > 0:
|
||||
puzzle_embedding = self.puzzle_emb(puzzle_identifiers)
|
||||
|
||||
pad_count = self.puzzle_emb_len * self.config.hidden_size - puzzle_embedding.shape[-1]
|
||||
if pad_count > 0:
|
||||
puzzle_embedding = F.pad(puzzle_embedding, (0, pad_count))
|
||||
|
||||
embedding = torch.cat((puzzle_embedding.view(-1, self.puzzle_emb_len, self.config.hidden_size), embedding), dim=-2)
|
||||
|
||||
# Position embeddings
|
||||
if self.config.pos_encodings == "learned":
|
||||
# scale by 1/sqrt(2) to maintain forward variance
|
||||
embedding = 0.707106781 * (embedding + self.embed_pos.embedding_weight.to(self.forward_dtype))
|
||||
|
||||
# Scale
|
||||
return self.embed_scale * embedding
|
||||
|
||||
def empty_carry(self, batch_size: int):
|
||||
return TinyRecursiveReasoningModel_ACTV1InnerCarry(
|
||||
z_H=torch.empty(batch_size, self.config.seq_len + self.puzzle_emb_len, self.config.hidden_size, dtype=self.forward_dtype),
|
||||
z_L=torch.empty(batch_size, self.config.seq_len + self.puzzle_emb_len, self.config.hidden_size, dtype=self.forward_dtype),
|
||||
)
|
||||
|
||||
def reset_carry(self, reset_flag: torch.Tensor, carry: TinyRecursiveReasoningModel_ACTV1InnerCarry):
|
||||
return TinyRecursiveReasoningModel_ACTV1InnerCarry(
|
||||
z_H=torch.where(reset_flag.view(-1, 1, 1), self.H_init, carry.z_H),
|
||||
z_L=torch.where(reset_flag.view(-1, 1, 1), self.L_init, carry.z_L),
|
||||
)
|
||||
|
||||
def forward(self, carry: TinyRecursiveReasoningModel_ACTV1InnerCarry, batch: Dict[str, torch.Tensor]) -> Tuple[TinyRecursiveReasoningModel_ACTV1InnerCarry, torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
||||
seq_info = dict(
|
||||
cos_sin=self.rotary_emb() if hasattr(self, "rotary_emb") else None,
|
||||
)
|
||||
|
||||
# Input encoding
|
||||
input_embeddings = self._input_embeddings(batch["inputs"], batch["puzzle_identifiers"])
|
||||
|
||||
# Forward iterations
|
||||
it = 0
|
||||
z_H, z_L = carry.z_H, carry.z_L
|
||||
# H_cycles-1 without grad
|
||||
with torch.no_grad():
|
||||
for _H_step in range(self.config.H_cycles-1):
|
||||
for _L_step in range(self.config.L_cycles):
|
||||
z_L = self.L_level(z_L, z_H + input_embeddings, **seq_info)
|
||||
z_H = self.L_level(z_H, z_L, **seq_info)
|
||||
# 1 with grad
|
||||
for _L_step in range(self.config.L_cycles):
|
||||
z_L = self.L_level(z_L, z_H + input_embeddings, **seq_info)
|
||||
z_H = self.L_level(z_H, z_L, **seq_info)
|
||||
|
||||
# LM Outputs
|
||||
new_carry = TinyRecursiveReasoningModel_ACTV1InnerCarry(z_H=z_H.detach(), z_L=z_L.detach()) # New carry no grad
|
||||
output = self.lm_head(z_H)[:, self.puzzle_emb_len:]
|
||||
q_logits = self.q_head(z_H[:, 0]).to(torch.float32) # Q-head; uses the first puzzle_emb position
|
||||
return new_carry, output, (q_logits[..., 0], q_logits[..., 1])
|
||||
|
||||
|
||||
class TinyRecursiveReasoningModel_ACTV1(nn.Module):
|
||||
"""ACT wrapper."""
|
||||
|
||||
def __init__(self, config_dict: dict):
|
||||
super().__init__()
|
||||
self.config = TinyRecursiveReasoningModel_ACTV1Config(**config_dict)
|
||||
self.inner = TinyRecursiveReasoningModel_ACTV1_Inner(self.config)
|
||||
|
||||
@property
|
||||
def puzzle_emb(self):
|
||||
return self.inner.puzzle_emb
|
||||
|
||||
def initial_carry(self, batch: Dict[str, torch.Tensor]):
|
||||
batch_size = batch["inputs"].shape[0]
|
||||
|
||||
return TinyRecursiveReasoningModel_ACTV1Carry(
|
||||
inner_carry=self.inner.empty_carry(batch_size), # Empty is expected, it will be reseted in first pass as all sequences are halted.
|
||||
|
||||
steps=torch.zeros((batch_size, ), dtype=torch.int32),
|
||||
halted=torch.ones((batch_size, ), dtype=torch.bool), # Default to halted
|
||||
|
||||
current_data={k: torch.empty_like(v) for k, v in batch.items()}
|
||||
)
|
||||
|
||||
def forward(self, carry: TinyRecursiveReasoningModel_ACTV1Carry, batch: Dict[str, torch.Tensor]) -> Tuple[TinyRecursiveReasoningModel_ACTV1Carry, Dict[str, torch.Tensor]]:
|
||||
|
||||
# Update data, carry (removing halted sequences)
|
||||
new_inner_carry = self.inner.reset_carry(carry.halted, carry.inner_carry)
|
||||
|
||||
new_steps = torch.where(carry.halted, 0, carry.steps)
|
||||
|
||||
new_current_data = {k: torch.where(carry.halted.view((-1, ) + (1, ) * (batch[k].ndim - 1)), batch[k], v) for k, v in carry.current_data.items()}
|
||||
|
||||
# Forward inner model
|
||||
new_inner_carry, logits, (q_halt_logits, q_continue_logits) = self.inner(new_inner_carry, new_current_data)
|
||||
|
||||
outputs = {
|
||||
"logits": logits,
|
||||
"q_halt_logits": q_halt_logits,
|
||||
"q_continue_logits": q_continue_logits
|
||||
}
|
||||
|
||||
with torch.no_grad():
|
||||
# Step
|
||||
new_steps = new_steps + 1
|
||||
is_last_step = new_steps >= self.config.halt_max_steps
|
||||
|
||||
halted = is_last_step
|
||||
|
||||
# if training, and ACT is enabled
|
||||
if self.training and (self.config.halt_max_steps > 1):
|
||||
|
||||
# Halt signal
|
||||
# NOTE: During evaluation, always use max steps, this is to guarantee the same halting steps inside a batch for batching purposes
|
||||
|
||||
if self.config.no_ACT_continue:
|
||||
halted = halted | (q_halt_logits > 0)
|
||||
else:
|
||||
halted = halted | (q_halt_logits > q_continue_logits)
|
||||
|
||||
# Exploration
|
||||
min_halt_steps = (torch.rand_like(q_halt_logits) < self.config.halt_exploration_prob) * torch.randint_like(new_steps, low=2, high=self.config.halt_max_steps + 1)
|
||||
halted = halted & (new_steps >= min_halt_steps)
|
||||
|
||||
if not self.config.no_ACT_continue:
|
||||
# Compute target Q
|
||||
# NOTE: No replay buffer and target networks for computing target Q-value.
|
||||
# As batch_size is large, there're many parallel envs.
|
||||
# Similar concept as PQN https://arxiv.org/abs/2407.04811
|
||||
_, _, (next_q_halt_logits, next_q_continue_logits), _, _ = self.inner(new_inner_carry, new_current_data)
|
||||
outputs["target_q_continue"] = torch.sigmoid(torch.where(is_last_step, next_q_halt_logits, torch.maximum(next_q_halt_logits, next_q_continue_logits)))
|
||||
|
||||
return TinyRecursiveReasoningModel_ACTV1Carry(new_inner_carry, new_steps, halted, new_current_data), outputs
|
||||
323
models/recursive_reasoning/trm_hier6.py
Normal file
323
models/recursive_reasoning/trm_hier6.py
Normal file
@@ -0,0 +1,323 @@
|
||||
from typing import Tuple, List, Dict, Optional
|
||||
from dataclasses import dataclass
|
||||
import math
|
||||
import torch
|
||||
import copy
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
from pydantic import BaseModel
|
||||
import random
|
||||
from models.common import trunc_normal_init_
|
||||
from models.layers import rms_norm, LinearSwish, SwiGLU, Attention, RotaryEmbedding, CosSin, CastedEmbedding, CastedLinear
|
||||
from models.sparse_embedding import CastedSparseEmbedding
|
||||
|
||||
IGNORE_LABEL_ID = -100
|
||||
|
||||
@dataclass
|
||||
class TinyRecursiveReasoningModel_ACTV1InnerCarry:
|
||||
z_H: torch.Tensor
|
||||
z_L1: torch.Tensor
|
||||
z_L2: torch.Tensor
|
||||
z_L3: torch.Tensor
|
||||
z_L4: torch.Tensor
|
||||
z_L5: torch.Tensor
|
||||
z_L6: torch.Tensor
|
||||
|
||||
|
||||
|
||||
@dataclass
|
||||
class TinyRecursiveReasoningModel_ACTV1Carry:
|
||||
inner_carry: TinyRecursiveReasoningModel_ACTV1InnerCarry
|
||||
|
||||
steps: torch.Tensor
|
||||
halted: torch.Tensor
|
||||
|
||||
current_data: Dict[str, torch.Tensor]
|
||||
|
||||
|
||||
class TinyRecursiveReasoningModel_ACTV1Config(BaseModel):
|
||||
batch_size: int
|
||||
seq_len: int
|
||||
puzzle_emb_ndim: int = 0
|
||||
num_puzzle_identifiers: int
|
||||
vocab_size: int
|
||||
|
||||
H_cycles: int
|
||||
L_cycles: int
|
||||
|
||||
H_layers: int # ignored
|
||||
L_layers: int
|
||||
|
||||
# Transformer config
|
||||
hidden_size: int
|
||||
expansion: float
|
||||
num_heads: int
|
||||
pos_encodings: str
|
||||
|
||||
rms_norm_eps: float = 1e-5
|
||||
rope_theta: float = 10000.0
|
||||
|
||||
# Halting Q-learning config
|
||||
halt_max_steps: int
|
||||
halt_exploration_prob: float
|
||||
|
||||
forward_dtype: str = "bfloat16"
|
||||
|
||||
# Alexia: added
|
||||
mlp_t: bool = False # use mlp on L instead of transformer
|
||||
puzzle_emb_len: int = 16 # if non-zero, its specified to this value
|
||||
no_ACT_continue: bool = True # No continue ACT loss, only use the sigmoid of the halt which makes much more sense
|
||||
|
||||
class TinyRecursiveReasoningModel_ACTV1Block(nn.Module):
|
||||
def __init__(self, config: TinyRecursiveReasoningModel_ACTV1Config) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.config = config
|
||||
if self.config.mlp_t:
|
||||
self.puzzle_emb_len = -(self.config.puzzle_emb_ndim // -self.config.hidden_size) if self.config.puzzle_emb_len == 0 else self.config.puzzle_emb_len
|
||||
self.mlp_t = SwiGLU(
|
||||
hidden_size=self.config.seq_len + self.puzzle_emb_len, # L
|
||||
expansion=config.expansion,
|
||||
)
|
||||
else:
|
||||
self.self_attn = Attention(
|
||||
hidden_size=config.hidden_size,
|
||||
head_dim=config.hidden_size // config.num_heads,
|
||||
num_heads=config.num_heads,
|
||||
num_key_value_heads=config.num_heads,
|
||||
causal=False
|
||||
)
|
||||
self.mlp = SwiGLU(
|
||||
hidden_size=config.hidden_size,
|
||||
expansion=config.expansion,
|
||||
)
|
||||
self.norm_eps = config.rms_norm_eps
|
||||
|
||||
def forward(self, cos_sin: CosSin, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
# B, L, D = hidden_states.shape
|
||||
# Post Norm
|
||||
if self.config.mlp_t:
|
||||
hidden_states = hidden_states.transpose(1,2)
|
||||
out = self.mlp_t(hidden_states)
|
||||
hidden_states = rms_norm(hidden_states + out, variance_epsilon=self.norm_eps)
|
||||
hidden_states = hidden_states.transpose(1,2)
|
||||
else:
|
||||
# Self Attention
|
||||
hidden_states = rms_norm(hidden_states + self.self_attn(cos_sin=cos_sin, hidden_states=hidden_states), variance_epsilon=self.norm_eps)
|
||||
# Fully Connected
|
||||
out = self.mlp(hidden_states)
|
||||
hidden_states = rms_norm(hidden_states + out, variance_epsilon=self.norm_eps)
|
||||
return hidden_states
|
||||
|
||||
class TinyRecursiveReasoningModel_ACTV1ReasoningModule(nn.Module):
|
||||
def __init__(self, layers: List[TinyRecursiveReasoningModel_ACTV1Block]):
|
||||
super().__init__()
|
||||
self.layers = torch.nn.ModuleList(layers)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor, input_injection: torch.Tensor, **kwargs) -> torch.Tensor:
|
||||
hidden_states = hidden_states + input_injection
|
||||
for layer in self.layers:
|
||||
hidden_states = layer(hidden_states=hidden_states, **kwargs)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class TinyRecursiveReasoningModel_ACTV1_Inner(nn.Module):
|
||||
def __init__(self, config: TinyRecursiveReasoningModel_ACTV1Config) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.forward_dtype = getattr(torch, self.config.forward_dtype)
|
||||
|
||||
# I/O
|
||||
|
||||
self.embed_scale = math.sqrt(self.config.hidden_size)
|
||||
embed_init_std = 1.0 / self.embed_scale
|
||||
|
||||
self.embed_tokens = CastedEmbedding(self.config.vocab_size, self.config.hidden_size, init_std=embed_init_std, cast_to=self.forward_dtype)
|
||||
self.lm_head = CastedLinear(self.config.hidden_size, self.config.vocab_size, bias=False)
|
||||
self.q_head = CastedLinear(self.config.hidden_size, 2, bias=True)
|
||||
|
||||
self.puzzle_emb_len = -(self.config.puzzle_emb_ndim // -self.config.hidden_size) if self.config.puzzle_emb_len == 0 else self.config.puzzle_emb_len # ceil div
|
||||
if self.config.puzzle_emb_ndim > 0:
|
||||
# Zero init puzzle embeddings
|
||||
self.puzzle_emb = CastedSparseEmbedding(self.config.num_puzzle_identifiers, self.config.puzzle_emb_ndim,
|
||||
batch_size=self.config.batch_size, init_std=0, cast_to=self.forward_dtype)
|
||||
|
||||
# LM Blocks
|
||||
if self.config.pos_encodings == "rope":
|
||||
self.rotary_emb = RotaryEmbedding(dim=self.config.hidden_size // self.config.num_heads,
|
||||
max_position_embeddings=self.config.seq_len + self.puzzle_emb_len,
|
||||
base=self.config.rope_theta)
|
||||
elif self.config.pos_encodings == "learned":
|
||||
self.embed_pos = CastedEmbedding(self.config.seq_len + self.puzzle_emb_len, self.config.hidden_size, init_std=embed_init_std, cast_to=self.forward_dtype)
|
||||
else:
|
||||
pass
|
||||
|
||||
# Reasoning Layers
|
||||
self.L_level = TinyRecursiveReasoningModel_ACTV1ReasoningModule(layers=[TinyRecursiveReasoningModel_ACTV1Block(self.config) for _i in range(self.config.L_layers)])
|
||||
|
||||
# Initial states
|
||||
self.H_init = nn.Buffer(trunc_normal_init_(torch.empty(self.config.hidden_size, dtype=self.forward_dtype), std=1), persistent=True)
|
||||
self.L1_init = nn.Buffer(trunc_normal_init_(torch.empty(self.config.hidden_size, dtype=self.forward_dtype), std=1), persistent=True)
|
||||
self.L2_init = nn.Buffer(trunc_normal_init_(torch.empty(self.config.hidden_size, dtype=self.forward_dtype), std=1), persistent=True)
|
||||
self.L3_init = nn.Buffer(trunc_normal_init_(torch.empty(self.config.hidden_size, dtype=self.forward_dtype), std=1), persistent=True)
|
||||
self.L4_init = nn.Buffer(trunc_normal_init_(torch.empty(self.config.hidden_size, dtype=self.forward_dtype), std=1), persistent=True)
|
||||
self.L5_init = nn.Buffer(trunc_normal_init_(torch.empty(self.config.hidden_size, dtype=self.forward_dtype), std=1), persistent=True)
|
||||
self.L6_init = nn.Buffer(trunc_normal_init_(torch.empty(self.config.hidden_size, dtype=self.forward_dtype), std=1), persistent=True)
|
||||
|
||||
# Q head special init
|
||||
# Init Q to (almost) zero for faster learning during bootstrapping
|
||||
with torch.no_grad():
|
||||
self.q_head.weight.zero_()
|
||||
self.q_head.bias.fill_(-5) # type: ignore
|
||||
|
||||
def _input_embeddings(self, input: torch.Tensor, puzzle_identifiers: torch.Tensor):
|
||||
# Token embedding
|
||||
embedding = self.embed_tokens(input.to(torch.int32))
|
||||
|
||||
# Puzzle embeddings
|
||||
if self.config.puzzle_emb_ndim > 0:
|
||||
puzzle_embedding = self.puzzle_emb(puzzle_identifiers)
|
||||
|
||||
pad_count = self.puzzle_emb_len * self.config.hidden_size - puzzle_embedding.shape[-1]
|
||||
if pad_count > 0:
|
||||
puzzle_embedding = F.pad(puzzle_embedding, (0, pad_count))
|
||||
|
||||
embedding = torch.cat((puzzle_embedding.view(-1, self.puzzle_emb_len, self.config.hidden_size), embedding), dim=-2)
|
||||
|
||||
# Position embeddings
|
||||
if self.config.pos_encodings == "learned":
|
||||
# scale by 1/sqrt(2) to maintain forward variance
|
||||
embedding = 0.707106781 * (embedding + self.embed_pos.embedding_weight.to(self.forward_dtype))
|
||||
|
||||
# Scale
|
||||
return self.embed_scale * embedding
|
||||
|
||||
def empty_carry(self, batch_size: int):
|
||||
return TinyRecursiveReasoningModel_ACTV1InnerCarry(
|
||||
z_H=torch.empty(batch_size, self.config.seq_len + self.puzzle_emb_len, self.config.hidden_size, dtype=self.forward_dtype),
|
||||
z_L1=torch.empty(batch_size, self.config.seq_len + self.puzzle_emb_len, self.config.hidden_size, dtype=self.forward_dtype),
|
||||
z_L2=torch.empty(batch_size, self.config.seq_len + self.puzzle_emb_len, self.config.hidden_size, dtype=self.forward_dtype),
|
||||
z_L3=torch.empty(batch_size, self.config.seq_len + self.puzzle_emb_len, self.config.hidden_size, dtype=self.forward_dtype),
|
||||
z_L4=torch.empty(batch_size, self.config.seq_len + self.puzzle_emb_len, self.config.hidden_size, dtype=self.forward_dtype),
|
||||
z_L5=torch.empty(batch_size, self.config.seq_len + self.puzzle_emb_len, self.config.hidden_size, dtype=self.forward_dtype),
|
||||
z_L6=torch.empty(batch_size, self.config.seq_len + self.puzzle_emb_len, self.config.hidden_size, dtype=self.forward_dtype),
|
||||
)
|
||||
|
||||
def reset_carry(self, reset_flag: torch.Tensor, carry: TinyRecursiveReasoningModel_ACTV1InnerCarry):
|
||||
return TinyRecursiveReasoningModel_ACTV1InnerCarry(
|
||||
z_H=torch.where(reset_flag.view(-1, 1, 1), self.H_init, carry.z_H),
|
||||
z_L1=torch.where(reset_flag.view(-1, 1, 1), self.L1_init, carry.z_L1),
|
||||
z_L2=torch.where(reset_flag.view(-1, 1, 1), self.L2_init, carry.z_L2),
|
||||
z_L3=torch.where(reset_flag.view(-1, 1, 1), self.L3_init, carry.z_L3),
|
||||
z_L4=torch.where(reset_flag.view(-1, 1, 1), self.L4_init, carry.z_L4),
|
||||
z_L5=torch.where(reset_flag.view(-1, 1, 1), self.L5_init, carry.z_L5),
|
||||
z_L6=torch.where(reset_flag.view(-1, 1, 1), self.L6_init, carry.z_L6),
|
||||
)
|
||||
|
||||
|
||||
def forward(self, carry: TinyRecursiveReasoningModel_ACTV1InnerCarry, batch: Dict[str, torch.Tensor]) -> Tuple[TinyRecursiveReasoningModel_ACTV1InnerCarry, torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
||||
seq_info = dict(
|
||||
cos_sin=self.rotary_emb() if hasattr(self, "rotary_emb") else None,
|
||||
)
|
||||
|
||||
# Input encoding
|
||||
input_embeddings = self._input_embeddings(batch["inputs"], batch["puzzle_identifiers"])
|
||||
|
||||
# Forward iterations
|
||||
it = 0
|
||||
z_H, z_L = carry.z_H, [carry.z_L1, carry.z_L2, carry.z_L3, carry.z_L4, carry.z_L5, carry.z_L6]
|
||||
# H_cycles-1 without grad
|
||||
with torch.no_grad():
|
||||
for _H_step in range(self.config.H_cycles-1):
|
||||
for _L_step in range(self.config.L_cycles):
|
||||
z_L_ = z_L[0] + z_L[1] + z_L[2] + z_L[3] + z_L[4] + z_L[5]
|
||||
z_L[_L_step] = self.L_level(z_L_, z_H + input_embeddings, **seq_info)
|
||||
z_L_ = z_L[0] + z_L[1] + z_L[2] + z_L[3] + z_L[4] + z_L[5]
|
||||
z_H = self.L_level(z_H, z_L_, **seq_info)
|
||||
# 1 with grad
|
||||
for _L_step in range(self.config.L_cycles):
|
||||
z_L_ = z_L[0] + z_L[1] + z_L[2] + z_L[3] + z_L[4] + z_L[5]
|
||||
z_L[_L_step] = self.L_level(z_L_, z_H + input_embeddings, **seq_info)
|
||||
z_L_ = z_L[0] + z_L[1] + z_L[2] + z_L[3] + z_L[4] + z_L[5]
|
||||
z_H = self.L_level(z_H, z_L_, **seq_info)
|
||||
|
||||
# LM Outputs
|
||||
new_carry = TinyRecursiveReasoningModel_ACTV1InnerCarry(z_H=z_H.detach(), z_L1=z_L[0].detach(), z_L2=z_L[1].detach(), z_L3=z_L[2].detach(), z_L4=z_L[3].detach(), z_L5=z_L[4].detach(), z_L6=z_L[5].detach()) # New carry no grad
|
||||
output = self.lm_head(z_H)[:, self.puzzle_emb_len:]
|
||||
q_logits = self.q_head(z_H[:, 0]).to(torch.float32) # Q-head; uses the first puzzle_emb position
|
||||
return new_carry, output, (q_logits[..., 0], q_logits[..., 1])
|
||||
|
||||
|
||||
class TinyRecursiveReasoningModel_ACTV1(nn.Module):
|
||||
"""ACT wrapper."""
|
||||
|
||||
def __init__(self, config_dict: dict):
|
||||
super().__init__()
|
||||
self.config = TinyRecursiveReasoningModel_ACTV1Config(**config_dict)
|
||||
self.inner = TinyRecursiveReasoningModel_ACTV1_Inner(self.config)
|
||||
|
||||
@property
|
||||
def puzzle_emb(self):
|
||||
return self.inner.puzzle_emb
|
||||
|
||||
def initial_carry(self, batch: Dict[str, torch.Tensor]):
|
||||
batch_size = batch["inputs"].shape[0]
|
||||
|
||||
return TinyRecursiveReasoningModel_ACTV1Carry(
|
||||
inner_carry=self.inner.empty_carry(batch_size), # Empty is expected, it will be reseted in first pass as all sequences are halted.
|
||||
|
||||
steps=torch.zeros((batch_size, ), dtype=torch.int32),
|
||||
halted=torch.ones((batch_size, ), dtype=torch.bool), # Default to halted
|
||||
|
||||
current_data={k: torch.empty_like(v) for k, v in batch.items()}
|
||||
)
|
||||
|
||||
def forward(self, carry: TinyRecursiveReasoningModel_ACTV1Carry, batch: Dict[str, torch.Tensor]) -> Tuple[TinyRecursiveReasoningModel_ACTV1Carry, Dict[str, torch.Tensor]]:
|
||||
|
||||
# Update data, carry (removing halted sequences)
|
||||
new_inner_carry = self.inner.reset_carry(carry.halted, carry.inner_carry)
|
||||
|
||||
new_steps = torch.where(carry.halted, 0, carry.steps)
|
||||
|
||||
new_current_data = {k: torch.where(carry.halted.view((-1, ) + (1, ) * (batch[k].ndim - 1)), batch[k], v) for k, v in carry.current_data.items()}
|
||||
|
||||
# Forward inner model
|
||||
new_inner_carry, logits, (q_halt_logits, q_continue_logits) = self.inner(new_inner_carry, new_current_data)
|
||||
|
||||
outputs = {
|
||||
"logits": logits,
|
||||
"q_halt_logits": q_halt_logits,
|
||||
"q_continue_logits": q_continue_logits
|
||||
}
|
||||
|
||||
with torch.no_grad():
|
||||
# Step
|
||||
new_steps = new_steps + 1
|
||||
is_last_step = new_steps >= self.config.halt_max_steps
|
||||
|
||||
halted = is_last_step
|
||||
|
||||
# if training, and ACT is enabled
|
||||
if self.training and (self.config.halt_max_steps > 1):
|
||||
|
||||
# Halt signal
|
||||
# NOTE: During evaluation, always use max steps, this is to guarantee the same halting steps inside a batch for batching purposes
|
||||
|
||||
if self.config.no_ACT_continue:
|
||||
halted = halted | (q_halt_logits > 0)
|
||||
else:
|
||||
halted = halted | (q_halt_logits > q_continue_logits)
|
||||
|
||||
# Exploration
|
||||
min_halt_steps = (torch.rand_like(q_halt_logits) < self.config.halt_exploration_prob) * torch.randint_like(new_steps, low=2, high=self.config.halt_max_steps + 1)
|
||||
halted = halted & (new_steps >= min_halt_steps)
|
||||
|
||||
if not self.config.no_ACT_continue:
|
||||
# Compute target Q
|
||||
# NOTE: No replay buffer and target networks for computing target Q-value.
|
||||
# As batch_size is large, there're many parallel envs.
|
||||
# Similar concept as PQN https://arxiv.org/abs/2407.04811
|
||||
_, _, (next_q_halt_logits, next_q_continue_logits), _, _ = self.inner(new_inner_carry, new_current_data)
|
||||
outputs["target_q_continue"] = torch.sigmoid(torch.where(is_last_step, next_q_halt_logits, torch.maximum(next_q_halt_logits, next_q_continue_logits)))
|
||||
|
||||
return TinyRecursiveReasoningModel_ACTV1Carry(new_inner_carry, new_steps, halted, new_current_data), outputs
|
||||
294
models/recursive_reasoning/trm_singlez.py
Normal file
294
models/recursive_reasoning/trm_singlez.py
Normal file
@@ -0,0 +1,294 @@
|
||||
from typing import Tuple, List, Dict, Optional
|
||||
from dataclasses import dataclass
|
||||
import math
|
||||
import torch
|
||||
import copy
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
from pydantic import BaseModel
|
||||
import random
|
||||
from models.common import trunc_normal_init_
|
||||
from models.layers import rms_norm, LinearSwish, SwiGLU, Attention, RotaryEmbedding, CosSin, CastedEmbedding, CastedLinear
|
||||
from models.sparse_embedding import CastedSparseEmbedding
|
||||
|
||||
IGNORE_LABEL_ID = -100
|
||||
|
||||
@dataclass
|
||||
class TinyRecursiveReasoningModel_ACTV1InnerCarry:
|
||||
z_L: torch.Tensor
|
||||
|
||||
|
||||
|
||||
@dataclass
|
||||
class TinyRecursiveReasoningModel_ACTV1Carry:
|
||||
inner_carry: TinyRecursiveReasoningModel_ACTV1InnerCarry
|
||||
|
||||
steps: torch.Tensor
|
||||
halted: torch.Tensor
|
||||
|
||||
current_data: Dict[str, torch.Tensor]
|
||||
|
||||
|
||||
class TinyRecursiveReasoningModel_ACTV1Config(BaseModel):
|
||||
batch_size: int
|
||||
seq_len: int
|
||||
puzzle_emb_ndim: int = 0
|
||||
num_puzzle_identifiers: int
|
||||
vocab_size: int
|
||||
|
||||
H_cycles: int
|
||||
L_cycles: int
|
||||
|
||||
H_layers: int # ignored
|
||||
L_layers: int
|
||||
|
||||
# Transformer config
|
||||
hidden_size: int
|
||||
expansion: float
|
||||
num_heads: int
|
||||
pos_encodings: str
|
||||
|
||||
rms_norm_eps: float = 1e-5
|
||||
rope_theta: float = 10000.0
|
||||
|
||||
# Halting Q-learning config
|
||||
halt_max_steps: int
|
||||
halt_exploration_prob: float
|
||||
|
||||
forward_dtype: str = "bfloat16"
|
||||
|
||||
# Alexia: added
|
||||
mlp_t: bool = False # use mlp on L instead of transformer
|
||||
puzzle_emb_len: int = 16 # if non-zero, its specified to this value
|
||||
no_ACT_continue: bool = True # No continue ACT loss, only use the sigmoid of the halt which makes much more sense
|
||||
|
||||
class TinyRecursiveReasoningModel_ACTV1Block(nn.Module):
|
||||
def __init__(self, config: TinyRecursiveReasoningModel_ACTV1Config) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.config = config
|
||||
if self.config.mlp_t:
|
||||
self.puzzle_emb_len = -(self.config.puzzle_emb_ndim // -self.config.hidden_size) if self.config.puzzle_emb_len == 0 else self.config.puzzle_emb_len
|
||||
self.mlp_t = SwiGLU(
|
||||
hidden_size=self.config.seq_len + self.puzzle_emb_len, # L
|
||||
expansion=config.expansion,
|
||||
)
|
||||
else:
|
||||
self.self_attn = Attention(
|
||||
hidden_size=config.hidden_size,
|
||||
head_dim=config.hidden_size // config.num_heads,
|
||||
num_heads=config.num_heads,
|
||||
num_key_value_heads=config.num_heads,
|
||||
causal=False
|
||||
)
|
||||
self.mlp = SwiGLU(
|
||||
hidden_size=config.hidden_size,
|
||||
expansion=config.expansion,
|
||||
)
|
||||
self.norm_eps = config.rms_norm_eps
|
||||
|
||||
def forward(self, cos_sin: CosSin, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
# B, L, D = hidden_states.shape
|
||||
# Post Norm
|
||||
if self.config.mlp_t:
|
||||
hidden_states = hidden_states.transpose(1,2)
|
||||
out = self.mlp_t(hidden_states)
|
||||
hidden_states = rms_norm(hidden_states + out, variance_epsilon=self.norm_eps)
|
||||
hidden_states = hidden_states.transpose(1,2)
|
||||
else:
|
||||
# Self Attention
|
||||
hidden_states = rms_norm(hidden_states + self.self_attn(cos_sin=cos_sin, hidden_states=hidden_states), variance_epsilon=self.norm_eps)
|
||||
# Fully Connected
|
||||
out = self.mlp(hidden_states)
|
||||
hidden_states = rms_norm(hidden_states + out, variance_epsilon=self.norm_eps)
|
||||
return hidden_states
|
||||
|
||||
class TinyRecursiveReasoningModel_ACTV1ReasoningModule(nn.Module):
|
||||
def __init__(self, layers: List[TinyRecursiveReasoningModel_ACTV1Block]):
|
||||
super().__init__()
|
||||
self.layers = torch.nn.ModuleList(layers)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor, **kwargs) -> torch.Tensor:
|
||||
for layer in self.layers:
|
||||
hidden_states = layer(hidden_states=hidden_states, **kwargs)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class TinyRecursiveReasoningModel_ACTV1_Inner(nn.Module):
|
||||
def __init__(self, config: TinyRecursiveReasoningModel_ACTV1Config) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.forward_dtype = getattr(torch, self.config.forward_dtype)
|
||||
|
||||
# I/O
|
||||
|
||||
self.embed_scale = math.sqrt(self.config.hidden_size)
|
||||
embed_init_std = 1.0 / self.embed_scale
|
||||
|
||||
self.embed_tokens = CastedEmbedding(self.config.vocab_size, self.config.hidden_size, init_std=embed_init_std, cast_to=self.forward_dtype)
|
||||
self.lm_head = CastedLinear(self.config.hidden_size, self.config.vocab_size, bias=False)
|
||||
self.q_head = CastedLinear(self.config.hidden_size, 2, bias=True)
|
||||
|
||||
self.puzzle_emb_len = -(self.config.puzzle_emb_ndim // -self.config.hidden_size) if self.config.puzzle_emb_len == 0 else self.config.puzzle_emb_len # ceil div
|
||||
if self.config.puzzle_emb_ndim > 0:
|
||||
# Zero init puzzle embeddings
|
||||
self.puzzle_emb = CastedSparseEmbedding(self.config.num_puzzle_identifiers, self.config.puzzle_emb_ndim,
|
||||
batch_size=self.config.batch_size, init_std=0, cast_to=self.forward_dtype)
|
||||
|
||||
# LM Blocks
|
||||
if self.config.pos_encodings == "rope":
|
||||
self.rotary_emb = RotaryEmbedding(dim=self.config.hidden_size // self.config.num_heads,
|
||||
max_position_embeddings=self.config.seq_len + self.puzzle_emb_len,
|
||||
base=self.config.rope_theta)
|
||||
elif self.config.pos_encodings == "learned":
|
||||
self.embed_pos = CastedEmbedding(self.config.seq_len + self.puzzle_emb_len, self.config.hidden_size, init_std=embed_init_std, cast_to=self.forward_dtype)
|
||||
else:
|
||||
pass
|
||||
|
||||
# Reasoning Layers
|
||||
self.L_level = TinyRecursiveReasoningModel_ACTV1ReasoningModule(layers=[TinyRecursiveReasoningModel_ACTV1Block(self.config) for _i in range(self.config.L_layers)])
|
||||
|
||||
# Initial states
|
||||
self.L_init = nn.Buffer(trunc_normal_init_(torch.empty(self.config.hidden_size, dtype=self.forward_dtype), std=1), persistent=True)
|
||||
|
||||
# Q head special init
|
||||
# Init Q to (almost) zero for faster learning during bootstrapping
|
||||
with torch.no_grad():
|
||||
self.q_head.weight.zero_()
|
||||
self.q_head.bias.fill_(-5) # type: ignore
|
||||
|
||||
def _input_embeddings(self, input: torch.Tensor, puzzle_identifiers: torch.Tensor):
|
||||
# Token embedding
|
||||
embedding = self.embed_tokens(input.to(torch.int32))
|
||||
|
||||
# Puzzle embeddings
|
||||
if self.config.puzzle_emb_ndim > 0:
|
||||
puzzle_embedding = self.puzzle_emb(puzzle_identifiers)
|
||||
|
||||
pad_count = self.puzzle_emb_len * self.config.hidden_size - puzzle_embedding.shape[-1]
|
||||
if pad_count > 0:
|
||||
puzzle_embedding = F.pad(puzzle_embedding, (0, pad_count))
|
||||
|
||||
embedding = torch.cat((puzzle_embedding.view(-1, self.puzzle_emb_len, self.config.hidden_size), embedding), dim=-2)
|
||||
|
||||
# Position embeddings
|
||||
if self.config.pos_encodings == "learned":
|
||||
# scale by 1/sqrt(2) to maintain forward variance
|
||||
embedding = 0.707106781 * (embedding + self.embed_pos.embedding_weight.to(self.forward_dtype))
|
||||
|
||||
# Scale
|
||||
return self.embed_scale * embedding
|
||||
|
||||
def empty_carry(self, batch_size: int):
|
||||
return TinyRecursiveReasoningModel_ACTV1InnerCarry(
|
||||
z_L=torch.empty(batch_size, self.config.seq_len + self.puzzle_emb_len, self.config.hidden_size, dtype=self.forward_dtype),
|
||||
)
|
||||
|
||||
def reset_carry(self, reset_flag: torch.Tensor, carry: TinyRecursiveReasoningModel_ACTV1InnerCarry):
|
||||
return TinyRecursiveReasoningModel_ACTV1InnerCarry(
|
||||
z_L=torch.where(reset_flag.view(-1, 1, 1), self.L_init, carry.z_L),
|
||||
)
|
||||
|
||||
def forward(self, carry: TinyRecursiveReasoningModel_ACTV1InnerCarry, batch: Dict[str, torch.Tensor]) -> Tuple[TinyRecursiveReasoningModel_ACTV1InnerCarry, torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
||||
seq_info = dict(
|
||||
cos_sin=self.rotary_emb() if hasattr(self, "rotary_emb") else None,
|
||||
)
|
||||
|
||||
# Input encoding
|
||||
input_embeddings = self._input_embeddings(batch["inputs"], batch["puzzle_identifiers"])
|
||||
|
||||
# Forward iterations
|
||||
it = 0
|
||||
z_L = carry.z_L
|
||||
# H_cycles-1 without grad
|
||||
with torch.no_grad():
|
||||
for _H_step in range(self.config.H_cycles-1):
|
||||
for _L_step in range(self.config.L_cycles):
|
||||
z_L = self.L_level(z_L + input_embeddings, **seq_info)
|
||||
z_L = self.L_level(z_L, **seq_info)
|
||||
# 1 with grad
|
||||
for _L_step in range(self.config.L_cycles):
|
||||
z_L = self.L_level(z_L + input_embeddings, **seq_info)
|
||||
z_L = self.L_level(z_L, **seq_info)
|
||||
z_out = z_L
|
||||
|
||||
# LM Outputs
|
||||
new_carry = TinyRecursiveReasoningModel_ACTV1InnerCarry(z_L=z_L.detach()) # New carry no grad
|
||||
output = self.lm_head(z_out)[:, self.puzzle_emb_len:]
|
||||
q_logits = self.q_head(z_out[:, 0]).to(torch.float32) # Q-head; uses the first puzzle_emb position
|
||||
return new_carry, output, (q_logits[..., 0], q_logits[..., 1])
|
||||
|
||||
|
||||
class TinyRecursiveReasoningModel_ACTV1(nn.Module):
|
||||
"""ACT wrapper."""
|
||||
|
||||
def __init__(self, config_dict: dict):
|
||||
super().__init__()
|
||||
self.config = TinyRecursiveReasoningModel_ACTV1Config(**config_dict)
|
||||
self.inner = TinyRecursiveReasoningModel_ACTV1_Inner(self.config)
|
||||
|
||||
@property
|
||||
def puzzle_emb(self):
|
||||
return self.inner.puzzle_emb
|
||||
|
||||
def initial_carry(self, batch: Dict[str, torch.Tensor]):
|
||||
batch_size = batch["inputs"].shape[0]
|
||||
|
||||
return TinyRecursiveReasoningModel_ACTV1Carry(
|
||||
inner_carry=self.inner.empty_carry(batch_size), # Empty is expected, it will be reseted in first pass as all sequences are halted.
|
||||
|
||||
steps=torch.zeros((batch_size, ), dtype=torch.int32),
|
||||
halted=torch.ones((batch_size, ), dtype=torch.bool), # Default to halted
|
||||
|
||||
current_data={k: torch.empty_like(v) for k, v in batch.items()}
|
||||
)
|
||||
|
||||
def forward(self, carry: TinyRecursiveReasoningModel_ACTV1Carry, batch: Dict[str, torch.Tensor]) -> Tuple[TinyRecursiveReasoningModel_ACTV1Carry, Dict[str, torch.Tensor]]:
|
||||
|
||||
# Update data, carry (removing halted sequences)
|
||||
new_inner_carry = self.inner.reset_carry(carry.halted, carry.inner_carry)
|
||||
|
||||
new_steps = torch.where(carry.halted, 0, carry.steps)
|
||||
|
||||
new_current_data = {k: torch.where(carry.halted.view((-1, ) + (1, ) * (batch[k].ndim - 1)), batch[k], v) for k, v in carry.current_data.items()}
|
||||
|
||||
# Forward inner model
|
||||
new_inner_carry, logits, (q_halt_logits, q_continue_logits) = self.inner(new_inner_carry, new_current_data)
|
||||
|
||||
outputs = {
|
||||
"logits": logits,
|
||||
"q_halt_logits": q_halt_logits,
|
||||
"q_continue_logits": q_continue_logits
|
||||
}
|
||||
|
||||
with torch.no_grad():
|
||||
# Step
|
||||
new_steps = new_steps + 1
|
||||
is_last_step = new_steps >= self.config.halt_max_steps
|
||||
|
||||
halted = is_last_step
|
||||
|
||||
# if training, and ACT is enabled
|
||||
if self.training and (self.config.halt_max_steps > 1):
|
||||
|
||||
# Halt signal
|
||||
# NOTE: During evaluation, always use max steps, this is to guarantee the same halting steps inside a batch for batching purposes
|
||||
|
||||
if self.config.no_ACT_continue:
|
||||
halted = halted | (q_halt_logits > 0)
|
||||
else:
|
||||
halted = halted | (q_halt_logits > q_continue_logits)
|
||||
|
||||
# Exploration
|
||||
min_halt_steps = (torch.rand_like(q_halt_logits) < self.config.halt_exploration_prob) * torch.randint_like(new_steps, low=2, high=self.config.halt_max_steps + 1)
|
||||
halted = halted & (new_steps >= min_halt_steps)
|
||||
|
||||
if not self.config.no_ACT_continue:
|
||||
# Compute target Q
|
||||
# NOTE: No replay buffer and target networks for computing target Q-value.
|
||||
# As batch_size is large, there're many parallel envs.
|
||||
# Similar concept as PQN https://arxiv.org/abs/2407.04811
|
||||
_, _, (next_q_halt_logits, next_q_continue_logits), _, _ = self.inner(new_inner_carry, new_current_data)
|
||||
outputs["target_q_continue"] = torch.sigmoid(torch.where(is_last_step, next_q_halt_logits, torch.maximum(next_q_halt_logits, next_q_continue_logits)))
|
||||
|
||||
return TinyRecursiveReasoningModel_ACTV1Carry(new_inner_carry, new_steps, halted, new_current_data), outputs
|
||||
Reference in New Issue
Block a user