from typing import Dict, Sequence, Optional import os import json import torch import numpy as np from numba import njit import torch.distributed as dist from dataset.build_arc_dataset import inverse_aug, grid_hash, arc_grid_to_np from dataset.common import PuzzleDatasetMetadata @njit def _crop(grid: np.ndarray): """Find maximum-sized rectangle without any EOS token inside. """ grid = grid.reshape(30, 30) max_area = 0 max_size = (0, 0) nr, nc = grid.shape num_c = nc for num_r in range(1, nr + 1): # Scan for maximum c for c in range(1, num_c + 1): x = grid[num_r - 1, c - 1] if (x < 2) | (x > 11): num_c = c - 1 break area = num_r * num_c if area > max_area: max_area = area max_size = (num_r, num_c) return (grid[:max_size[0], :max_size[1]] - 2).astype(np.uint8) class ARC: required_outputs = {"inputs", "puzzle_identifiers", "q_halt_logits", "preds"} def __init__(self, data_path: str, eval_metadata: PuzzleDatasetMetadata, submission_K: int = 2, pass_Ks: Sequence[int] = (1, 2, 5, 10, 100, 1000), aggregated_voting: bool = True): super().__init__() self.pass_Ks = pass_Ks self.submission_K = submission_K self.aggregated_voting = aggregated_voting self.blank_identifier_id = eval_metadata.blank_identifier_id # Load identifiers and test puzzles with open(os.path.join(data_path, "identifiers.json"), "r") as f: self.identifier_map = json.load(f) with open(os.path.join(data_path, "test_puzzles.json"), "r") as f: self.test_puzzles = json.load(f) # States self._local_hmap = {} self._local_preds = {} def begin_eval(self): if not self.aggregated_voting: # Clear previous predictions self._local_hmap = {} self._local_preds = {} def update_batch(self, batch: Dict[str, torch.Tensor], preds: Dict[str, torch.Tensor]): # Collect required outputs to CPU outputs = {} q_values = None for collection in (batch, preds): for k, v in collection.items(): if k in self.required_outputs: if k == "q_halt_logits": q_values = v.to(torch.float64).sigmoid().cpu() else: outputs[k] = v.cpu() assert q_values is not None # Remove padding from outputs mask = outputs["puzzle_identifiers"] != self.blank_identifier_id outputs = {k: v[mask] for k, v in outputs.items()} # Get predictions for identifier, input, pred, q in zip(outputs["puzzle_identifiers"].numpy(), outputs["inputs"].numpy(), outputs["preds"].numpy(), q_values.numpy()): name = self.identifier_map[identifier] orig_name, _inverse_fn = inverse_aug(name) input_hash = grid_hash(_inverse_fn(_crop(input))) pred = _inverse_fn(_crop(pred)) assert np.all((pred >= 0) & (pred <= 9)), f"Puzzle {name}'s prediction out of 0-9 range." # Sanity check # Store into local state pred_hash = grid_hash(pred) self._local_hmap[pred_hash] = pred self._local_preds.setdefault(orig_name, {}) self._local_preds[orig_name].setdefault(input_hash, []) self._local_preds[orig_name][input_hash].append((pred_hash, float(q))) def result(self, save_path: Optional[str], rank: int, world_size: int, group: Optional[torch.distributed.ProcessGroup] = None) -> Optional[Dict[str, float]]: # Gather predictions to rank 0 for voting global_hmap_preds = [None for _ in range(world_size)] if rank == 0 else None dist.gather_object((self._local_hmap, self._local_preds), global_hmap_preds, dst=0, group=group) # Rank 0 logic if rank != 0: return submission = {} correct = [0.0 for _ in range(len(self.pass_Ks))] for name, puzzle in self.test_puzzles.items(): # Process test examples in this puzzle submission[name] = [] num_test_correct = [0 for _ in range(len(self.pass_Ks))] for pair in puzzle["test"]: input_hash = grid_hash(arc_grid_to_np(pair["input"])) label_hash = grid_hash(arc_grid_to_np(pair["output"])) p_map = {} for hmap, preds in global_hmap_preds: # type: ignore for h, q in preds.get(name, {}).get(input_hash, {}): p_map.setdefault(h, [0, 0]) p_map[h][0] += 1 p_map[h][1] += q if not len(p_map): print (f"Puzzle {name} has no predictions.") continue for h, stats in p_map.items(): stats[1] /= stats[0] p_map = sorted(p_map.items(), key=lambda kv: kv[1], reverse=True) # vote for different Ks for i, k in enumerate(self.pass_Ks): ok = False for h, stats in p_map[:k]: ok |= h == label_hash num_test_correct[i] += ok # Query grids pred_grids = [] for h, stats in p_map[:self.submission_K]: for hmap, preds in global_hmap_preds: # type: ignore if h in hmap: pred_grids.append(hmap[h]) break # Pad to K while len(pred_grids) < self.submission_K: pred_grids.append(pred_grids[0]) submission[name].append({f"attempt_{i + 1}": grid.tolist() for i, grid in enumerate(pred_grids)}) # Total correctness for i in range(len(self.pass_Ks)): correct[i] += num_test_correct[i] / len(puzzle["test"]) # Save submission if save_path is not None: with open(os.path.join(save_path, "submission.json"), "w") as f: json.dump(submission, f) # Final result all_results = {f"ARC/pass@{k}": correct[i] / len(self.test_puzzles) for i, k in enumerate(self.pass_Ks)} return all_results