655 lines
22 KiB
Python
655 lines
22 KiB
Python
from typing import Optional, Any, Sequence, List
|
|
from dataclasses import dataclass
|
|
import os
|
|
import math
|
|
import yaml
|
|
import shutil
|
|
import copy
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
from torch import nn
|
|
from torch.utils.data import DataLoader
|
|
|
|
import tqdm
|
|
import wandb
|
|
import coolname
|
|
import hydra
|
|
import pydantic
|
|
from omegaconf import DictConfig
|
|
from adam_atan2 import AdamATan2
|
|
|
|
from puzzle_dataset import PuzzleDataset, PuzzleDatasetConfig, PuzzleDatasetMetadata
|
|
from utils.functions import load_model_class, get_model_source_path
|
|
from models.sparse_embedding import CastedSparseEmbeddingSignSGD_Distributed
|
|
from models.ema import EMAHelper
|
|
|
|
|
|
class LossConfig(pydantic.BaseModel):
|
|
model_config = pydantic.ConfigDict(extra='allow')
|
|
name: str
|
|
|
|
|
|
class ArchConfig(pydantic.BaseModel):
|
|
model_config = pydantic.ConfigDict(extra='allow')
|
|
name: str
|
|
loss: LossConfig
|
|
|
|
|
|
class EvaluatorConfig(pydantic.BaseModel):
|
|
model_config = pydantic.ConfigDict(extra="allow")
|
|
name: str
|
|
|
|
|
|
class PretrainConfig(pydantic.BaseModel):
|
|
# Config
|
|
arch: ArchConfig
|
|
# Data
|
|
data_paths: List[str]
|
|
data_paths_test: List[str] = []
|
|
# Evaluators
|
|
evaluators: List[EvaluatorConfig] = []
|
|
|
|
# Hyperparams
|
|
global_batch_size: int
|
|
epochs: int
|
|
|
|
lr: float
|
|
lr_min_ratio: float
|
|
lr_warmup_steps: int
|
|
|
|
weight_decay: float
|
|
beta1: float
|
|
beta2: float
|
|
|
|
# Puzzle embedding
|
|
puzzle_emb_lr: float
|
|
puzzle_emb_weight_decay: float
|
|
|
|
# Names
|
|
project_name: Optional[str] = None
|
|
run_name: Optional[str] = None
|
|
load_checkpoint: Optional[str] = None
|
|
checkpoint_path: Optional[str] = None
|
|
|
|
# Extras
|
|
seed: int = 0
|
|
checkpoint_every_eval: bool = False
|
|
eval_interval: Optional[int] = None
|
|
min_eval_interval: Optional[int] = 0 # when to start eval
|
|
eval_save_outputs: List[str] = []
|
|
|
|
ema: bool = False # use Exponential-Moving-Average
|
|
ema_rate: float = 0.999 # EMA-rate
|
|
freeze_weights: bool = False # If True, freeze weights and only learn the embeddings
|
|
|
|
@dataclass
|
|
class TrainState:
|
|
model: nn.Module
|
|
optimizers: Sequence[torch.optim.Optimizer]
|
|
optimizer_lrs: Sequence[float]
|
|
carry: Any
|
|
|
|
step: int
|
|
total_steps: int
|
|
|
|
|
|
def create_dataloader(config: PretrainConfig, split: str, rank: int, world_size: int, **kwargs):
|
|
dataset = PuzzleDataset(PuzzleDatasetConfig(
|
|
seed=config.seed,
|
|
dataset_paths=config.data_paths_test if len(config.data_paths_test)>0 and split=="test" else config.data_paths,
|
|
rank=rank,
|
|
num_replicas=world_size,
|
|
**kwargs
|
|
), split=split)
|
|
dataloader = DataLoader(
|
|
dataset,
|
|
batch_size=None,
|
|
num_workers=1,
|
|
prefetch_factor=8,
|
|
pin_memory=True,
|
|
persistent_workers=True
|
|
)
|
|
return dataloader, dataset.metadata
|
|
|
|
|
|
def create_model(config: PretrainConfig, train_metadata: PuzzleDatasetMetadata, rank: int, world_size: int):
|
|
model_cfg = dict(
|
|
**config.arch.__pydantic_extra__, # type: ignore
|
|
batch_size=config.global_batch_size // world_size,
|
|
vocab_size=train_metadata.vocab_size,
|
|
seq_len=train_metadata.seq_len,
|
|
num_puzzle_identifiers=train_metadata.num_puzzle_identifiers,
|
|
causal=False # Non-autoregressive
|
|
)
|
|
|
|
# Instantiate model with loss head
|
|
model_cls = load_model_class(config.arch.name)
|
|
loss_head_cls = load_model_class(config.arch.loss.name)
|
|
|
|
with torch.device("cuda"):
|
|
model: nn.Module = model_cls(model_cfg)
|
|
print(model)
|
|
model = loss_head_cls(model, **config.arch.loss.__pydantic_extra__) # type: ignore
|
|
if "DISABLE_COMPILE" not in os.environ:
|
|
model = torch.compile(model) # type: ignore
|
|
|
|
# Load checkpoint
|
|
if rank == 0:
|
|
load_checkpoint(model, config)
|
|
|
|
# Broadcast parameters from rank 0
|
|
if world_size > 1:
|
|
with torch.no_grad():
|
|
for param in list(model.parameters()) + list(model.buffers()):
|
|
dist.broadcast(param, src=0)
|
|
|
|
# Optimizers and lr
|
|
if config.arch.puzzle_emb_ndim == 0:
|
|
optimizers = [
|
|
AdamATan2(
|
|
model.parameters(),
|
|
lr=0, # Needs to be set by scheduler
|
|
weight_decay=config.weight_decay,
|
|
betas=(config.beta1, config.beta2)
|
|
)
|
|
]
|
|
optimizer_lrs = [
|
|
config.lr
|
|
]
|
|
elif config.freeze_weights:
|
|
optimizers = [
|
|
CastedSparseEmbeddingSignSGD_Distributed(
|
|
model.model.puzzle_emb.buffers(), # type: ignore
|
|
lr=0, # Needs to be set by scheduler
|
|
weight_decay=config.puzzle_emb_weight_decay,
|
|
world_size=world_size
|
|
)
|
|
]
|
|
optimizer_lrs = [
|
|
config.puzzle_emb_lr
|
|
]
|
|
else:
|
|
optimizers = [
|
|
CastedSparseEmbeddingSignSGD_Distributed(
|
|
model.model.puzzle_emb.buffers(), # type: ignore
|
|
lr=0, # Needs to be set by scheduler
|
|
weight_decay=config.puzzle_emb_weight_decay,
|
|
world_size=world_size
|
|
),
|
|
AdamATan2(
|
|
model.parameters(),
|
|
lr=0, # Needs to be set by scheduler
|
|
weight_decay=config.weight_decay,
|
|
betas=(config.beta1, config.beta2)
|
|
)
|
|
]
|
|
optimizer_lrs = [
|
|
config.puzzle_emb_lr,
|
|
config.lr
|
|
]
|
|
|
|
return model, optimizers, optimizer_lrs
|
|
|
|
def mix_weights_direct(device, alpha, net, nets):
|
|
sd = []
|
|
for i in range(len(nets)):
|
|
sd += [nets[i].state_dict()]
|
|
sd_alpha = {}
|
|
for k in sd[0].keys():
|
|
comb_net = alpha[0]*sd[0][k].to(device)
|
|
for i in range(1,len(nets)):
|
|
comb_net += alpha[i]*sd[i][k].to(device)
|
|
sd_alpha[k] = comb_net
|
|
net.load_state_dict(sd_alpha)
|
|
return net
|
|
|
|
def cosine_schedule_with_warmup_lr_lambda(
|
|
current_step: int, *, base_lr: float, num_warmup_steps: int, num_training_steps: int, min_ratio: float = 0.0, num_cycles: float = 0.5
|
|
):
|
|
if current_step < num_warmup_steps:
|
|
return base_lr * float(current_step) / float(max(1, num_warmup_steps))
|
|
|
|
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
|
|
return base_lr * (min_ratio + max(0.0, (1 - min_ratio) * 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))))
|
|
|
|
|
|
def init_train_state(config: PretrainConfig, train_metadata: PuzzleDatasetMetadata, rank: int, world_size: int):
|
|
# Estimated total training steps
|
|
total_steps = int(config.epochs * train_metadata.total_groups * train_metadata.mean_puzzle_examples / config.global_batch_size)
|
|
|
|
# Model
|
|
model, optimizers, optimizer_lrs = create_model(config, train_metadata, rank=rank, world_size=world_size)
|
|
|
|
return TrainState(
|
|
step=0,
|
|
total_steps=total_steps,
|
|
|
|
model=model,
|
|
optimizers=optimizers,
|
|
optimizer_lrs=optimizer_lrs,
|
|
carry=None
|
|
)
|
|
|
|
|
|
def save_train_state(config: PretrainConfig, train_state: TrainState):
|
|
# FIXME: Only saved model.
|
|
if config.checkpoint_path is None:
|
|
return
|
|
|
|
os.makedirs(config.checkpoint_path, exist_ok=True)
|
|
torch.save(train_state.model.state_dict(), os.path.join(config.checkpoint_path, f"step_{train_state.step}"))
|
|
|
|
|
|
def load_checkpoint(model: nn.Module, config: PretrainConfig):
|
|
if config.load_checkpoint is not None:
|
|
print(f"Loading checkpoint {config.load_checkpoint}")
|
|
|
|
# Load state dict
|
|
state_dict = torch.load(config.load_checkpoint, map_location="cuda")
|
|
|
|
# Resize and reset puzzle emb if needed
|
|
puzzle_emb_name = "_orig_mod.model.inner.puzzle_emb.weights"
|
|
expected_shape: torch.Size = model.model.puzzle_emb.weights.shape # type: ignore
|
|
if puzzle_emb_name in state_dict:
|
|
puzzle_emb = state_dict[puzzle_emb_name]
|
|
if puzzle_emb.shape != expected_shape:
|
|
print(f"Resetting puzzle embedding as shape is different. Found {puzzle_emb.shape}, Expected {expected_shape}")
|
|
# Re-initialize using mean
|
|
state_dict[puzzle_emb_name] = (
|
|
torch.mean(puzzle_emb, dim=0, keepdim=True).expand(expected_shape).contiguous()
|
|
)
|
|
model.load_state_dict(state_dict, assign=True)
|
|
|
|
|
|
def compute_lr(base_lr: float, config: PretrainConfig, train_state: TrainState):
|
|
return cosine_schedule_with_warmup_lr_lambda(
|
|
current_step=train_state.step,
|
|
base_lr=base_lr,
|
|
num_warmup_steps=round(config.lr_warmup_steps),
|
|
num_training_steps=train_state.total_steps,
|
|
min_ratio=config.lr_min_ratio
|
|
)
|
|
|
|
|
|
|
|
def create_evaluators(config: PretrainConfig, eval_metadata: PuzzleDatasetMetadata) -> List[Any]:
|
|
data_paths =config.data_paths_test if len(config.data_paths_test)>0 else config.data_paths
|
|
# Initialize evaluators
|
|
evaluators = []
|
|
for cfg in config.evaluators:
|
|
for data_path in data_paths:
|
|
cls = load_model_class(cfg.name, "evaluators.")(
|
|
data_path=data_path, eval_metadata=eval_metadata, **cfg.__pydantic_extra__
|
|
) # type: ignore
|
|
evaluators.append(cls)
|
|
|
|
return evaluators
|
|
|
|
def train_batch(config: PretrainConfig, train_state: TrainState, batch: Any, global_batch_size: int, rank: int, world_size: int):
|
|
train_state.step += 1
|
|
if train_state.step > train_state.total_steps: # At most train_total_steps
|
|
return
|
|
|
|
# To device
|
|
batch = {k: v.cuda() for k, v in batch.items()}
|
|
|
|
# Init carry if it is None
|
|
if train_state.carry is None:
|
|
with torch.device("cuda"):
|
|
train_state.carry = train_state.model.initial_carry(batch) # type: ignore
|
|
|
|
# Forward
|
|
train_state.carry, loss, metrics, _, _ = train_state.model(carry=train_state.carry, batch=batch, return_keys=[])
|
|
|
|
((1 / global_batch_size) * loss).backward()
|
|
|
|
# Allreduce
|
|
if world_size > 1:
|
|
for param in train_state.model.parameters():
|
|
if param.grad is not None:
|
|
dist.all_reduce(param.grad)
|
|
|
|
# Apply optimizer
|
|
lr_this_step = None
|
|
for optim, base_lr in zip(train_state.optimizers, train_state.optimizer_lrs):
|
|
lr_this_step = compute_lr(base_lr, config, train_state)
|
|
|
|
for param_group in optim.param_groups:
|
|
param_group['lr'] = lr_this_step
|
|
|
|
optim.step()
|
|
optim.zero_grad()
|
|
|
|
# Reduce metrics
|
|
if len(metrics):
|
|
assert not any(v.requires_grad for v in metrics.values())
|
|
|
|
metric_keys = list(sorted(metrics.keys())) # Sort keys to guarantee all processes use the same order.
|
|
# Reduce and reconstruct
|
|
metric_values = torch.stack([metrics[k] for k in metric_keys])
|
|
if world_size > 1:
|
|
dist.reduce(metric_values, dst=0)
|
|
|
|
if rank == 0:
|
|
metric_values = metric_values.cpu().numpy()
|
|
reduced_metrics = {k: metric_values[i] for i, k in enumerate(metric_keys)}
|
|
|
|
# Postprocess
|
|
count = max(reduced_metrics["count"], 1) # Avoid NaNs
|
|
reduced_metrics = {f"train/{k}": v / (global_batch_size if k.endswith("loss") else count) for k, v in reduced_metrics.items()}
|
|
|
|
reduced_metrics["train/lr"] = lr_this_step
|
|
return reduced_metrics
|
|
|
|
def evaluate(
|
|
config: PretrainConfig,
|
|
train_state: TrainState,
|
|
eval_loader: torch.utils.data.DataLoader,
|
|
eval_metadata: PuzzleDatasetMetadata,
|
|
evaluators: List[Any],
|
|
rank: int,
|
|
world_size: int,
|
|
cpu_group: Optional[dist.ProcessGroup],
|
|
):
|
|
reduced_metrics = None
|
|
|
|
with torch.inference_mode():
|
|
return_keys = set(config.eval_save_outputs)
|
|
for evaluator in evaluators:
|
|
evaluator.begin_eval()
|
|
return_keys.update(evaluator.required_outputs)
|
|
|
|
# Run evaluation
|
|
set_ids = {k: idx for idx, k in enumerate(eval_metadata.sets)}
|
|
|
|
save_preds = {}
|
|
|
|
metric_keys = []
|
|
metric_values = None
|
|
|
|
carry = None
|
|
processed_batches = 0
|
|
|
|
for set_name, batch, global_batch_size in eval_loader:
|
|
processed_batches += 1
|
|
if rank == 0:
|
|
print(f"Processing batch {processed_batches}: {set_name}")
|
|
|
|
# To device
|
|
batch = {k: v.cuda() for k, v in batch.items()}
|
|
with torch.device("cuda"):
|
|
carry = train_state.model.initial_carry(batch) # type: ignore
|
|
|
|
# Forward
|
|
inference_steps = 0
|
|
while True:
|
|
carry, loss, metrics, preds, all_finish = train_state.model(
|
|
carry=carry, batch=batch, return_keys=return_keys
|
|
)
|
|
inference_steps += 1
|
|
|
|
if all_finish:
|
|
break
|
|
|
|
if rank == 0:
|
|
print(f" Completed inference in {inference_steps} steps")
|
|
|
|
for collection in (batch, preds):
|
|
for k, v in collection.items():
|
|
if k in config.eval_save_outputs:
|
|
save_preds.setdefault(k, [])
|
|
save_preds[k].append(v.cpu()) # Move to CPU for saving GPU memory
|
|
|
|
for evaluator in evaluators:
|
|
evaluator.update_batch(batch, preds)
|
|
|
|
del carry, loss, preds, batch, all_finish
|
|
|
|
# Aggregate metrics
|
|
set_id = set_ids[set_name]
|
|
|
|
if metric_values is None:
|
|
metric_keys = list(
|
|
sorted(metrics.keys())
|
|
) # Sort keys to guarantee all processes use the same order.
|
|
metric_values = torch.zeros(
|
|
(len(set_ids), len(metrics.values())), dtype=torch.float32, device="cuda"
|
|
)
|
|
|
|
metric_values[set_id] += torch.stack([metrics[k] for k in metric_keys])
|
|
|
|
del metrics
|
|
|
|
# concatenate save preds
|
|
save_preds = {k: torch.cat(v, dim=0) for k, v in save_preds.items()}
|
|
|
|
# Save preds
|
|
if config.checkpoint_path is not None and len(save_preds):
|
|
# Each rank save predictions independently
|
|
os.makedirs(os.path.dirname(config.checkpoint_path), exist_ok=True)
|
|
torch.save(
|
|
save_preds, os.path.join(config.checkpoint_path, f"step_{train_state.step}_all_preds.{rank}")
|
|
)
|
|
|
|
del save_preds
|
|
|
|
# Reduce to rank 0
|
|
if metric_values is not None:
|
|
if world_size > 1:
|
|
dist.reduce(metric_values, dst=0)
|
|
|
|
if rank == 0:
|
|
reduced_metrics = metric_values.cpu().numpy()
|
|
reduced_metrics = {
|
|
set_name: {
|
|
metric_name: reduced_metrics[set_id, metric_id]
|
|
for metric_id, metric_name in enumerate(metric_keys)
|
|
}
|
|
for set_id, set_name in enumerate(set_ids)
|
|
}
|
|
|
|
# Postprocess
|
|
for set_name, m in reduced_metrics.items():
|
|
count = m.pop("count")
|
|
reduced_metrics[set_name] = {k: v / count for k, v in m.items()}
|
|
|
|
# Run evaluators
|
|
if rank == 0:
|
|
print(f"\nRunning {len(evaluators)} evaluator(s)...")
|
|
|
|
for i, evaluator in enumerate(evaluators):
|
|
if rank == 0:
|
|
print(f"Running evaluator {i+1}/{len(evaluators)}: {evaluator.__class__.__name__}")
|
|
|
|
# Path for saving
|
|
evaluator_save_path = None
|
|
if config.checkpoint_path is not None:
|
|
evaluator_save_path = os.path.join(
|
|
config.checkpoint_path,
|
|
f"evaluator_{evaluator.__class__.__name__}_step_{train_state.step}",
|
|
)
|
|
os.makedirs(evaluator_save_path, exist_ok=True)
|
|
|
|
# Run and log
|
|
metrics = evaluator.result(evaluator_save_path, rank=rank, world_size=world_size, group=cpu_group)
|
|
if rank == 0 and metrics is not None:
|
|
if reduced_metrics is None:
|
|
reduced_metrics = {}
|
|
|
|
reduced_metrics.update(metrics)
|
|
print(f" Completed {evaluator.__class__.__name__}")
|
|
|
|
if rank == 0:
|
|
print("All evaluators completed!")
|
|
|
|
return reduced_metrics
|
|
|
|
def save_code_and_config(config: PretrainConfig):
|
|
if config.checkpoint_path is None or wandb.run is None:
|
|
return
|
|
|
|
os.makedirs(config.checkpoint_path, exist_ok=True)
|
|
|
|
# Copy code
|
|
code_list = [
|
|
get_model_source_path(config.arch.name),
|
|
get_model_source_path(config.arch.loss.name)
|
|
]
|
|
for code_file in code_list:
|
|
if code_file is not None:
|
|
code_name = os.path.basename(code_file)
|
|
|
|
shutil.copy(code_file, os.path.join(config.checkpoint_path, code_name))
|
|
|
|
# Dump config as yaml
|
|
config_file = os.path.join(config.checkpoint_path, "all_config.yaml")
|
|
with open(config_file, "wt") as f:
|
|
yaml.dump(config.model_dump(), f)
|
|
|
|
# Log code
|
|
wandb.run.log_code(config.checkpoint_path)
|
|
|
|
|
|
def load_synced_config(hydra_config: DictConfig, rank: int, world_size: int) -> PretrainConfig:
|
|
objects = [None]
|
|
if rank == 0:
|
|
config = PretrainConfig(**hydra_config) # type: ignore
|
|
|
|
# Naming
|
|
if config.project_name is None:
|
|
config.project_name = f"{os.path.basename(config.data_paths[0]).capitalize()}-ACT-torch"
|
|
if config.run_name is None:
|
|
config.run_name = f"{config.arch.name.split('@')[-1]} {coolname.generate_slug(2)}"
|
|
if config.checkpoint_path is None:
|
|
config.checkpoint_path = os.path.join("checkpoints", config.project_name, config.run_name)
|
|
|
|
objects = [config]
|
|
|
|
if world_size > 1:
|
|
dist.broadcast_object_list(objects, src=0)
|
|
|
|
return objects[0] # type: ignore
|
|
|
|
|
|
@hydra.main(config_path="config", config_name="cfg_pretrain", version_base=None)
|
|
def launch(hydra_config: DictConfig):
|
|
RANK = 0
|
|
WORLD_SIZE = 1
|
|
CPU_PROCESS_GROUP = None
|
|
|
|
# Initialize distributed training if in distributed environment (e.g. torchrun)
|
|
if "LOCAL_RANK" in os.environ:
|
|
# Initialize distributed, default device and dtype
|
|
dist.init_process_group(backend="nccl")
|
|
|
|
RANK = dist.get_rank()
|
|
WORLD_SIZE = dist.get_world_size()
|
|
|
|
torch.cuda.set_device(int(os.environ["LOCAL_RANK"]))
|
|
|
|
# CPU GLOO process group
|
|
CPU_PROCESS_GROUP = dist.new_group(backend="gloo")
|
|
assert (
|
|
dist.get_rank(CPU_PROCESS_GROUP) == RANK and dist.get_world_size(CPU_PROCESS_GROUP) == WORLD_SIZE
|
|
)
|
|
|
|
# Load sync'ed config
|
|
config = load_synced_config(hydra_config, rank=RANK, world_size=WORLD_SIZE)
|
|
|
|
# Seed RNGs to ensure consistency
|
|
torch.random.manual_seed(config.seed + RANK)
|
|
|
|
# Dataset
|
|
train_epochs_per_iter = config.eval_interval if config.eval_interval is not None else config.epochs
|
|
total_iters = config.epochs // train_epochs_per_iter
|
|
|
|
assert config.epochs % train_epochs_per_iter == 0, "Eval interval must be a divisor of total epochs."
|
|
|
|
train_loader, train_metadata = create_dataloader(config, "train", test_set_mode=False, epochs_per_iter=train_epochs_per_iter, global_batch_size=config.global_batch_size, rank=RANK, world_size=WORLD_SIZE)
|
|
try:
|
|
eval_loader, eval_metadata = create_dataloader(config, "test", test_set_mode=True, epochs_per_iter=1, global_batch_size=config.global_batch_size, rank=RANK, world_size=WORLD_SIZE)
|
|
except:
|
|
print("NO EVAL DATA FOUND")
|
|
eval_loader = eval_metadata = None
|
|
|
|
try:
|
|
evaluators = create_evaluators(config, eval_metadata)
|
|
except:
|
|
print("No evaluator found")
|
|
evaluators = []
|
|
|
|
# Train state
|
|
train_state = init_train_state(config, train_metadata, rank=RANK, world_size=WORLD_SIZE)
|
|
|
|
# Progress bar and logger
|
|
progress_bar = None
|
|
ema_helper = None
|
|
if RANK == 0:
|
|
progress_bar = tqdm.tqdm(total=train_state.total_steps)
|
|
wandb.init(project=config.project_name, name=config.run_name, config=config.model_dump(), settings=wandb.Settings(_disable_stats=True)) # type: ignore
|
|
wandb.log({"num_params": sum(x.numel() for x in train_state.model.parameters())}, step=0)
|
|
save_code_and_config(config)
|
|
if config.ema:
|
|
print('Setup EMA')
|
|
ema_helper = EMAHelper(mu=config.ema_rate)
|
|
ema_helper.register(train_state.model)
|
|
|
|
# Training Loop
|
|
for _iter_id in range(total_iters):
|
|
print (f"[Rank {RANK}, World Size {WORLD_SIZE}]: Epoch {_iter_id * train_epochs_per_iter}")
|
|
|
|
############ Train Iter
|
|
if RANK == 0:
|
|
print("TRAIN")
|
|
train_state.model.train()
|
|
for set_name, batch, global_batch_size in train_loader:
|
|
metrics = train_batch(config, train_state, batch, global_batch_size, rank=RANK, world_size=WORLD_SIZE)
|
|
|
|
if RANK == 0 and metrics is not None:
|
|
wandb.log(metrics, step=train_state.step)
|
|
progress_bar.update(train_state.step - progress_bar.n) # type: ignore
|
|
if config.ema:
|
|
ema_helper.update(train_state.model)
|
|
|
|
if _iter_id >= config.min_eval_interval:
|
|
############ Evaluation
|
|
if RANK == 0:
|
|
print("EVALUATE")
|
|
if config.ema:
|
|
print("SWITCH TO EMA")
|
|
train_state_eval = copy.deepcopy(train_state)
|
|
train_state_eval.model = ema_helper.ema_copy(train_state_eval.model)
|
|
else:
|
|
train_state_eval = train_state
|
|
train_state_eval.model.eval()
|
|
metrics = evaluate(config,
|
|
train_state_eval,
|
|
eval_loader,
|
|
eval_metadata,
|
|
evaluators,
|
|
rank=RANK,
|
|
world_size=WORLD_SIZE,
|
|
cpu_group=CPU_PROCESS_GROUP)
|
|
|
|
if RANK == 0 and metrics is not None:
|
|
wandb.log(metrics, step=train_state.step)
|
|
|
|
############ Checkpointing
|
|
if RANK == 0:
|
|
print("SAVE CHECKPOINT")
|
|
if RANK == 0 and (config.checkpoint_every_eval or (_iter_id == total_iters - 1)):
|
|
save_train_state(config, train_state_eval)
|
|
|
|
if config.ema:
|
|
del train_state_eval
|
|
|
|
# finalize
|
|
if dist.is_initialized():
|
|
dist.destroy_process_group()
|
|
wandb.finish()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
launch()
|