Files
Alexia Jolicoeur-Martineau 8120f2bdf7 upload
2025-10-07 09:26:04 -04:00

655 lines
22 KiB
Python

from typing import Optional, Any, Sequence, List
from dataclasses import dataclass
import os
import math
import yaml
import shutil
import copy
import torch
import torch.distributed as dist
from torch import nn
from torch.utils.data import DataLoader
import tqdm
import wandb
import coolname
import hydra
import pydantic
from omegaconf import DictConfig
from adam_atan2 import AdamATan2
from puzzle_dataset import PuzzleDataset, PuzzleDatasetConfig, PuzzleDatasetMetadata
from utils.functions import load_model_class, get_model_source_path
from models.sparse_embedding import CastedSparseEmbeddingSignSGD_Distributed
from models.ema import EMAHelper
class LossConfig(pydantic.BaseModel):
model_config = pydantic.ConfigDict(extra='allow')
name: str
class ArchConfig(pydantic.BaseModel):
model_config = pydantic.ConfigDict(extra='allow')
name: str
loss: LossConfig
class EvaluatorConfig(pydantic.BaseModel):
model_config = pydantic.ConfigDict(extra="allow")
name: str
class PretrainConfig(pydantic.BaseModel):
# Config
arch: ArchConfig
# Data
data_paths: List[str]
data_paths_test: List[str] = []
# Evaluators
evaluators: List[EvaluatorConfig] = []
# Hyperparams
global_batch_size: int
epochs: int
lr: float
lr_min_ratio: float
lr_warmup_steps: int
weight_decay: float
beta1: float
beta2: float
# Puzzle embedding
puzzle_emb_lr: float
puzzle_emb_weight_decay: float
# Names
project_name: Optional[str] = None
run_name: Optional[str] = None
load_checkpoint: Optional[str] = None
checkpoint_path: Optional[str] = None
# Extras
seed: int = 0
checkpoint_every_eval: bool = False
eval_interval: Optional[int] = None
min_eval_interval: Optional[int] = 0 # when to start eval
eval_save_outputs: List[str] = []
ema: bool = False # use Exponential-Moving-Average
ema_rate: float = 0.999 # EMA-rate
freeze_weights: bool = False # If True, freeze weights and only learn the embeddings
@dataclass
class TrainState:
model: nn.Module
optimizers: Sequence[torch.optim.Optimizer]
optimizer_lrs: Sequence[float]
carry: Any
step: int
total_steps: int
def create_dataloader(config: PretrainConfig, split: str, rank: int, world_size: int, **kwargs):
dataset = PuzzleDataset(PuzzleDatasetConfig(
seed=config.seed,
dataset_paths=config.data_paths_test if len(config.data_paths_test)>0 and split=="test" else config.data_paths,
rank=rank,
num_replicas=world_size,
**kwargs
), split=split)
dataloader = DataLoader(
dataset,
batch_size=None,
num_workers=1,
prefetch_factor=8,
pin_memory=True,
persistent_workers=True
)
return dataloader, dataset.metadata
def create_model(config: PretrainConfig, train_metadata: PuzzleDatasetMetadata, rank: int, world_size: int):
model_cfg = dict(
**config.arch.__pydantic_extra__, # type: ignore
batch_size=config.global_batch_size // world_size,
vocab_size=train_metadata.vocab_size,
seq_len=train_metadata.seq_len,
num_puzzle_identifiers=train_metadata.num_puzzle_identifiers,
causal=False # Non-autoregressive
)
# Instantiate model with loss head
model_cls = load_model_class(config.arch.name)
loss_head_cls = load_model_class(config.arch.loss.name)
with torch.device("cuda"):
model: nn.Module = model_cls(model_cfg)
print(model)
model = loss_head_cls(model, **config.arch.loss.__pydantic_extra__) # type: ignore
if "DISABLE_COMPILE" not in os.environ:
model = torch.compile(model) # type: ignore
# Load checkpoint
if rank == 0:
load_checkpoint(model, config)
# Broadcast parameters from rank 0
if world_size > 1:
with torch.no_grad():
for param in list(model.parameters()) + list(model.buffers()):
dist.broadcast(param, src=0)
# Optimizers and lr
if config.arch.puzzle_emb_ndim == 0:
optimizers = [
AdamATan2(
model.parameters(),
lr=0, # Needs to be set by scheduler
weight_decay=config.weight_decay,
betas=(config.beta1, config.beta2)
)
]
optimizer_lrs = [
config.lr
]
elif config.freeze_weights:
optimizers = [
CastedSparseEmbeddingSignSGD_Distributed(
model.model.puzzle_emb.buffers(), # type: ignore
lr=0, # Needs to be set by scheduler
weight_decay=config.puzzle_emb_weight_decay,
world_size=world_size
)
]
optimizer_lrs = [
config.puzzle_emb_lr
]
else:
optimizers = [
CastedSparseEmbeddingSignSGD_Distributed(
model.model.puzzle_emb.buffers(), # type: ignore
lr=0, # Needs to be set by scheduler
weight_decay=config.puzzle_emb_weight_decay,
world_size=world_size
),
AdamATan2(
model.parameters(),
lr=0, # Needs to be set by scheduler
weight_decay=config.weight_decay,
betas=(config.beta1, config.beta2)
)
]
optimizer_lrs = [
config.puzzle_emb_lr,
config.lr
]
return model, optimizers, optimizer_lrs
def mix_weights_direct(device, alpha, net, nets):
sd = []
for i in range(len(nets)):
sd += [nets[i].state_dict()]
sd_alpha = {}
for k in sd[0].keys():
comb_net = alpha[0]*sd[0][k].to(device)
for i in range(1,len(nets)):
comb_net += alpha[i]*sd[i][k].to(device)
sd_alpha[k] = comb_net
net.load_state_dict(sd_alpha)
return net
def cosine_schedule_with_warmup_lr_lambda(
current_step: int, *, base_lr: float, num_warmup_steps: int, num_training_steps: int, min_ratio: float = 0.0, num_cycles: float = 0.5
):
if current_step < num_warmup_steps:
return base_lr * float(current_step) / float(max(1, num_warmup_steps))
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
return base_lr * (min_ratio + max(0.0, (1 - min_ratio) * 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))))
def init_train_state(config: PretrainConfig, train_metadata: PuzzleDatasetMetadata, rank: int, world_size: int):
# Estimated total training steps
total_steps = int(config.epochs * train_metadata.total_groups * train_metadata.mean_puzzle_examples / config.global_batch_size)
# Model
model, optimizers, optimizer_lrs = create_model(config, train_metadata, rank=rank, world_size=world_size)
return TrainState(
step=0,
total_steps=total_steps,
model=model,
optimizers=optimizers,
optimizer_lrs=optimizer_lrs,
carry=None
)
def save_train_state(config: PretrainConfig, train_state: TrainState):
# FIXME: Only saved model.
if config.checkpoint_path is None:
return
os.makedirs(config.checkpoint_path, exist_ok=True)
torch.save(train_state.model.state_dict(), os.path.join(config.checkpoint_path, f"step_{train_state.step}"))
def load_checkpoint(model: nn.Module, config: PretrainConfig):
if config.load_checkpoint is not None:
print(f"Loading checkpoint {config.load_checkpoint}")
# Load state dict
state_dict = torch.load(config.load_checkpoint, map_location="cuda")
# Resize and reset puzzle emb if needed
puzzle_emb_name = "_orig_mod.model.inner.puzzle_emb.weights"
expected_shape: torch.Size = model.model.puzzle_emb.weights.shape # type: ignore
if puzzle_emb_name in state_dict:
puzzle_emb = state_dict[puzzle_emb_name]
if puzzle_emb.shape != expected_shape:
print(f"Resetting puzzle embedding as shape is different. Found {puzzle_emb.shape}, Expected {expected_shape}")
# Re-initialize using mean
state_dict[puzzle_emb_name] = (
torch.mean(puzzle_emb, dim=0, keepdim=True).expand(expected_shape).contiguous()
)
model.load_state_dict(state_dict, assign=True)
def compute_lr(base_lr: float, config: PretrainConfig, train_state: TrainState):
return cosine_schedule_with_warmup_lr_lambda(
current_step=train_state.step,
base_lr=base_lr,
num_warmup_steps=round(config.lr_warmup_steps),
num_training_steps=train_state.total_steps,
min_ratio=config.lr_min_ratio
)
def create_evaluators(config: PretrainConfig, eval_metadata: PuzzleDatasetMetadata) -> List[Any]:
data_paths =config.data_paths_test if len(config.data_paths_test)>0 else config.data_paths
# Initialize evaluators
evaluators = []
for cfg in config.evaluators:
for data_path in data_paths:
cls = load_model_class(cfg.name, "evaluators.")(
data_path=data_path, eval_metadata=eval_metadata, **cfg.__pydantic_extra__
) # type: ignore
evaluators.append(cls)
return evaluators
def train_batch(config: PretrainConfig, train_state: TrainState, batch: Any, global_batch_size: int, rank: int, world_size: int):
train_state.step += 1
if train_state.step > train_state.total_steps: # At most train_total_steps
return
# To device
batch = {k: v.cuda() for k, v in batch.items()}
# Init carry if it is None
if train_state.carry is None:
with torch.device("cuda"):
train_state.carry = train_state.model.initial_carry(batch) # type: ignore
# Forward
train_state.carry, loss, metrics, _, _ = train_state.model(carry=train_state.carry, batch=batch, return_keys=[])
((1 / global_batch_size) * loss).backward()
# Allreduce
if world_size > 1:
for param in train_state.model.parameters():
if param.grad is not None:
dist.all_reduce(param.grad)
# Apply optimizer
lr_this_step = None
for optim, base_lr in zip(train_state.optimizers, train_state.optimizer_lrs):
lr_this_step = compute_lr(base_lr, config, train_state)
for param_group in optim.param_groups:
param_group['lr'] = lr_this_step
optim.step()
optim.zero_grad()
# Reduce metrics
if len(metrics):
assert not any(v.requires_grad for v in metrics.values())
metric_keys = list(sorted(metrics.keys())) # Sort keys to guarantee all processes use the same order.
# Reduce and reconstruct
metric_values = torch.stack([metrics[k] for k in metric_keys])
if world_size > 1:
dist.reduce(metric_values, dst=0)
if rank == 0:
metric_values = metric_values.cpu().numpy()
reduced_metrics = {k: metric_values[i] for i, k in enumerate(metric_keys)}
# Postprocess
count = max(reduced_metrics["count"], 1) # Avoid NaNs
reduced_metrics = {f"train/{k}": v / (global_batch_size if k.endswith("loss") else count) for k, v in reduced_metrics.items()}
reduced_metrics["train/lr"] = lr_this_step
return reduced_metrics
def evaluate(
config: PretrainConfig,
train_state: TrainState,
eval_loader: torch.utils.data.DataLoader,
eval_metadata: PuzzleDatasetMetadata,
evaluators: List[Any],
rank: int,
world_size: int,
cpu_group: Optional[dist.ProcessGroup],
):
reduced_metrics = None
with torch.inference_mode():
return_keys = set(config.eval_save_outputs)
for evaluator in evaluators:
evaluator.begin_eval()
return_keys.update(evaluator.required_outputs)
# Run evaluation
set_ids = {k: idx for idx, k in enumerate(eval_metadata.sets)}
save_preds = {}
metric_keys = []
metric_values = None
carry = None
processed_batches = 0
for set_name, batch, global_batch_size in eval_loader:
processed_batches += 1
if rank == 0:
print(f"Processing batch {processed_batches}: {set_name}")
# To device
batch = {k: v.cuda() for k, v in batch.items()}
with torch.device("cuda"):
carry = train_state.model.initial_carry(batch) # type: ignore
# Forward
inference_steps = 0
while True:
carry, loss, metrics, preds, all_finish = train_state.model(
carry=carry, batch=batch, return_keys=return_keys
)
inference_steps += 1
if all_finish:
break
if rank == 0:
print(f" Completed inference in {inference_steps} steps")
for collection in (batch, preds):
for k, v in collection.items():
if k in config.eval_save_outputs:
save_preds.setdefault(k, [])
save_preds[k].append(v.cpu()) # Move to CPU for saving GPU memory
for evaluator in evaluators:
evaluator.update_batch(batch, preds)
del carry, loss, preds, batch, all_finish
# Aggregate metrics
set_id = set_ids[set_name]
if metric_values is None:
metric_keys = list(
sorted(metrics.keys())
) # Sort keys to guarantee all processes use the same order.
metric_values = torch.zeros(
(len(set_ids), len(metrics.values())), dtype=torch.float32, device="cuda"
)
metric_values[set_id] += torch.stack([metrics[k] for k in metric_keys])
del metrics
# concatenate save preds
save_preds = {k: torch.cat(v, dim=0) for k, v in save_preds.items()}
# Save preds
if config.checkpoint_path is not None and len(save_preds):
# Each rank save predictions independently
os.makedirs(os.path.dirname(config.checkpoint_path), exist_ok=True)
torch.save(
save_preds, os.path.join(config.checkpoint_path, f"step_{train_state.step}_all_preds.{rank}")
)
del save_preds
# Reduce to rank 0
if metric_values is not None:
if world_size > 1:
dist.reduce(metric_values, dst=0)
if rank == 0:
reduced_metrics = metric_values.cpu().numpy()
reduced_metrics = {
set_name: {
metric_name: reduced_metrics[set_id, metric_id]
for metric_id, metric_name in enumerate(metric_keys)
}
for set_id, set_name in enumerate(set_ids)
}
# Postprocess
for set_name, m in reduced_metrics.items():
count = m.pop("count")
reduced_metrics[set_name] = {k: v / count for k, v in m.items()}
# Run evaluators
if rank == 0:
print(f"\nRunning {len(evaluators)} evaluator(s)...")
for i, evaluator in enumerate(evaluators):
if rank == 0:
print(f"Running evaluator {i+1}/{len(evaluators)}: {evaluator.__class__.__name__}")
# Path for saving
evaluator_save_path = None
if config.checkpoint_path is not None:
evaluator_save_path = os.path.join(
config.checkpoint_path,
f"evaluator_{evaluator.__class__.__name__}_step_{train_state.step}",
)
os.makedirs(evaluator_save_path, exist_ok=True)
# Run and log
metrics = evaluator.result(evaluator_save_path, rank=rank, world_size=world_size, group=cpu_group)
if rank == 0 and metrics is not None:
if reduced_metrics is None:
reduced_metrics = {}
reduced_metrics.update(metrics)
print(f" Completed {evaluator.__class__.__name__}")
if rank == 0:
print("All evaluators completed!")
return reduced_metrics
def save_code_and_config(config: PretrainConfig):
if config.checkpoint_path is None or wandb.run is None:
return
os.makedirs(config.checkpoint_path, exist_ok=True)
# Copy code
code_list = [
get_model_source_path(config.arch.name),
get_model_source_path(config.arch.loss.name)
]
for code_file in code_list:
if code_file is not None:
code_name = os.path.basename(code_file)
shutil.copy(code_file, os.path.join(config.checkpoint_path, code_name))
# Dump config as yaml
config_file = os.path.join(config.checkpoint_path, "all_config.yaml")
with open(config_file, "wt") as f:
yaml.dump(config.model_dump(), f)
# Log code
wandb.run.log_code(config.checkpoint_path)
def load_synced_config(hydra_config: DictConfig, rank: int, world_size: int) -> PretrainConfig:
objects = [None]
if rank == 0:
config = PretrainConfig(**hydra_config) # type: ignore
# Naming
if config.project_name is None:
config.project_name = f"{os.path.basename(config.data_paths[0]).capitalize()}-ACT-torch"
if config.run_name is None:
config.run_name = f"{config.arch.name.split('@')[-1]} {coolname.generate_slug(2)}"
if config.checkpoint_path is None:
config.checkpoint_path = os.path.join("checkpoints", config.project_name, config.run_name)
objects = [config]
if world_size > 1:
dist.broadcast_object_list(objects, src=0)
return objects[0] # type: ignore
@hydra.main(config_path="config", config_name="cfg_pretrain", version_base=None)
def launch(hydra_config: DictConfig):
RANK = 0
WORLD_SIZE = 1
CPU_PROCESS_GROUP = None
# Initialize distributed training if in distributed environment (e.g. torchrun)
if "LOCAL_RANK" in os.environ:
# Initialize distributed, default device and dtype
dist.init_process_group(backend="nccl")
RANK = dist.get_rank()
WORLD_SIZE = dist.get_world_size()
torch.cuda.set_device(int(os.environ["LOCAL_RANK"]))
# CPU GLOO process group
CPU_PROCESS_GROUP = dist.new_group(backend="gloo")
assert (
dist.get_rank(CPU_PROCESS_GROUP) == RANK and dist.get_world_size(CPU_PROCESS_GROUP) == WORLD_SIZE
)
# Load sync'ed config
config = load_synced_config(hydra_config, rank=RANK, world_size=WORLD_SIZE)
# Seed RNGs to ensure consistency
torch.random.manual_seed(config.seed + RANK)
# Dataset
train_epochs_per_iter = config.eval_interval if config.eval_interval is not None else config.epochs
total_iters = config.epochs // train_epochs_per_iter
assert config.epochs % train_epochs_per_iter == 0, "Eval interval must be a divisor of total epochs."
train_loader, train_metadata = create_dataloader(config, "train", test_set_mode=False, epochs_per_iter=train_epochs_per_iter, global_batch_size=config.global_batch_size, rank=RANK, world_size=WORLD_SIZE)
try:
eval_loader, eval_metadata = create_dataloader(config, "test", test_set_mode=True, epochs_per_iter=1, global_batch_size=config.global_batch_size, rank=RANK, world_size=WORLD_SIZE)
except:
print("NO EVAL DATA FOUND")
eval_loader = eval_metadata = None
try:
evaluators = create_evaluators(config, eval_metadata)
except:
print("No evaluator found")
evaluators = []
# Train state
train_state = init_train_state(config, train_metadata, rank=RANK, world_size=WORLD_SIZE)
# Progress bar and logger
progress_bar = None
ema_helper = None
if RANK == 0:
progress_bar = tqdm.tqdm(total=train_state.total_steps)
wandb.init(project=config.project_name, name=config.run_name, config=config.model_dump(), settings=wandb.Settings(_disable_stats=True)) # type: ignore
wandb.log({"num_params": sum(x.numel() for x in train_state.model.parameters())}, step=0)
save_code_and_config(config)
if config.ema:
print('Setup EMA')
ema_helper = EMAHelper(mu=config.ema_rate)
ema_helper.register(train_state.model)
# Training Loop
for _iter_id in range(total_iters):
print (f"[Rank {RANK}, World Size {WORLD_SIZE}]: Epoch {_iter_id * train_epochs_per_iter}")
############ Train Iter
if RANK == 0:
print("TRAIN")
train_state.model.train()
for set_name, batch, global_batch_size in train_loader:
metrics = train_batch(config, train_state, batch, global_batch_size, rank=RANK, world_size=WORLD_SIZE)
if RANK == 0 and metrics is not None:
wandb.log(metrics, step=train_state.step)
progress_bar.update(train_state.step - progress_bar.n) # type: ignore
if config.ema:
ema_helper.update(train_state.model)
if _iter_id >= config.min_eval_interval:
############ Evaluation
if RANK == 0:
print("EVALUATE")
if config.ema:
print("SWITCH TO EMA")
train_state_eval = copy.deepcopy(train_state)
train_state_eval.model = ema_helper.ema_copy(train_state_eval.model)
else:
train_state_eval = train_state
train_state_eval.model.eval()
metrics = evaluate(config,
train_state_eval,
eval_loader,
eval_metadata,
evaluators,
rank=RANK,
world_size=WORLD_SIZE,
cpu_group=CPU_PROCESS_GROUP)
if RANK == 0 and metrics is not None:
wandb.log(metrics, step=train_state.step)
############ Checkpointing
if RANK == 0:
print("SAVE CHECKPOINT")
if RANK == 0 and (config.checkpoint_every_eval or (_iter_id == total_iters - 1)):
save_train_state(config, train_state_eval)
if config.ema:
del train_state_eval
# finalize
if dist.is_initialized():
dist.destroy_process_group()
wandb.finish()
if __name__ == "__main__":
launch()