FLUX.2 launch
This commit is contained in:
191
docs/flux2_dev_hf.md
Normal file
191
docs/flux2_dev_hf.md
Normal file
@@ -0,0 +1,191 @@
|
||||
# 🧨 Running the model with diffusers
|
||||
|
||||
## Getting started
|
||||
|
||||
Install diffusers from `main`
|
||||
|
||||
```sh
|
||||
pip install git+https://github.com/huggingface/diffusers.git
|
||||
```
|
||||
|
||||
After accepting the gating on this repository, login with Hugging Face on your terminal
|
||||
```sh
|
||||
hf auth login
|
||||
```
|
||||
|
||||
See below for inference instructions on different GPUs.
|
||||
|
||||
---
|
||||
|
||||
## 💾 Lower VRAM (~24-32G) - RTX 4090 and 5090
|
||||
|
||||
Those with 24-32GB of VRAM can use the model with **4-bit quantization**
|
||||
|
||||
### 4-bit transformer and remote text-encoder (~18G of VRAM)
|
||||
|
||||
The diffusers team is introducing a remote text-encoder for this release.
|
||||
The text-embeddings are calculated in bf16 in the cloud and you only load the transformer into VRAM (this setting can get as low as ~18G of VRAM)
|
||||
|
||||
```py
|
||||
import torch
|
||||
from diffusers import Flux2Pipeline, Flux2Transformer2DModel
|
||||
from diffusers.utils import load_image
|
||||
from huggingface_hub import get_token
|
||||
import requests
|
||||
import io
|
||||
|
||||
repo_id = "diffusers/FLUX.2-dev-bnb-4bit"
|
||||
device = "cuda:0"
|
||||
torch_dtype = torch.bfloat16
|
||||
|
||||
def remote_text_encoder(prompts):
|
||||
response = requests.post(
|
||||
"https://remote-text-encoder-flux-2.huggingface.co/predict",
|
||||
json={"prompt": prompts},
|
||||
headers={
|
||||
"Authorization": f"Bearer {get_token()}",
|
||||
"Content-Type": "application/json"
|
||||
}
|
||||
)
|
||||
prompt_embeds = torch.load(io.BytesIO(response.content))
|
||||
|
||||
return prompt_embeds.to(device)
|
||||
|
||||
pipe = Flux2Pipeline.from_pretrained(
|
||||
repo_id, transformer=transformer, text_encoder=None, torch_dtype=torch_dtype
|
||||
).to(device)
|
||||
|
||||
prompt = "Realistic macro photograph of a hermit crab using a soda can as its shell, partially emerging from the can, captured with sharp detail and natural colors, on a sunlit beach with soft shadows and a shallow depth of field, with blurred ocean waves in the background. The can has the text `BFL Diffusers` on it and it has a color gradient that start with #FF5733 at the top and transitions to #33FF57 at the bottom."
|
||||
|
||||
image = pipe(
|
||||
prompt_embeds=remote_text_encoder(prompt),
|
||||
#image=load_image("https://huggingface.co/spaces/zerogpu-aoti/FLUX.1-Kontext-Dev-fp8-dynamic/resolve/main/cat.png") #optional image input
|
||||
generator=torch.Generator(device=device).manual_seed(42),
|
||||
num_inference_steps=50, #28 steps can be a good trade-off
|
||||
guidance_scale=4,
|
||||
).images[0]
|
||||
|
||||
image.save("flux2_output.png")
|
||||
```
|
||||
|
||||
### 4-bit transformer and 4-bit text-encoder (~20G of VRAM)
|
||||
|
||||
Load both the text-encoder and the transformer in 4-bit.
|
||||
The text-encoder is offloaded from VRAM for the transformer to run with `pipe.enable_model_cpu_offload()`, making sure both will fit.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import Mistral3ForConditionalGeneration
|
||||
from diffusers import Flux2Pipeline, Flux2Transformer2DModel
|
||||
|
||||
repo_id = "diffusers/FLUX.2-dev-bnb-4bit"
|
||||
device = "cuda:0"
|
||||
torch_dtype = torch.bfloat16
|
||||
|
||||
transformer = Flux2Transformer2DModel.from_pretrained(
|
||||
repo_id, subfolder="transformer", torch_dtype=torch_dtype, device_map="cpu"
|
||||
)
|
||||
text_encoder = Mistral3ForConditionalGeneration.from_pretrained(
|
||||
repo_id, subfolder="text_encoder", dtype=torch_dtype, device_map="cpu"
|
||||
)
|
||||
|
||||
pipe = Flux2Pipeline.from_pretrained(
|
||||
repo_id, transformer=transformer, text_encoder=text_encoder, torch_dtype=torch_dtype
|
||||
)
|
||||
pipe.enable_model_cpu_offload()
|
||||
|
||||
prompt = "Realistic macro photograph of a hermit crab using a soda can as its shell, partially emerging from the can, captured with sharp detail and natural colors, on a sunlit beach with soft shadows and a shallow depth of field, with blurred ocean waves in the background. The can has the text `BFL + Diffusers` on it and it has a color gradient that start with #FF5733 at the top and transitions to #33FF57 at the bottom."
|
||||
|
||||
image = pipe(
|
||||
prompt=prompt,
|
||||
#image=[load_image("https://huggingface.co/spaces/zerogpu-aoti/FLUX.1-Kontext-Dev-fp8-dynamic/resolve/main/cat.png")] #multi-image input
|
||||
generator=torch.Generator(device=device).manual_seed(42),
|
||||
num_inference_steps=50,
|
||||
guidance_scale=4,
|
||||
).images[0]
|
||||
|
||||
image.save("flux2_output.png")
|
||||
```
|
||||
|
||||
To understand how different quantizations affect the model's abilities and quality, access the [FLUX.2 on diffusers](https://huggingface.co/blog/flux2) blog
|
||||
|
||||
---
|
||||
|
||||
## 💿 More VRAM (80G+)
|
||||
|
||||
Even an H100 can't hold the text-encoder, transormer and VAE at the same time. However, here it is a matter of activating the `pipe.enable_model_cpu_offload()`
|
||||
And for H200, B200 or larger carts, everything fits.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from diffusers import Flux2Pipeline
|
||||
|
||||
repo_id = "black-forest-labs/FLUX.2-dev"
|
||||
device = "cuda:0"
|
||||
torch_dtype = torch.bfloat16
|
||||
|
||||
pipe = Flux2Pipeline.from_pretrained(
|
||||
repo_id, torch_dtype=torch_dtype
|
||||
)
|
||||
pipe.enable_model_cpu_offload() #deactivate for >80G VRAM carts like H200, B200, etc. and do a `pipe.to(device)` instead
|
||||
|
||||
prompt = "Realistic macro photograph of a hermit crab using a soda can as its shell, partially emerging from the can, captured with sharp detail and natural colors, on a sunlit beach with soft shadows and a shallow depth of field, with blurred ocean waves in the background. The can has the text `BFL Diffusers` on it and it has a color gradient that start with #FF5733 at the top and transitions to #33FF57 at the bottom."
|
||||
|
||||
image = pipe(
|
||||
prompt=prompt,
|
||||
#image=[load_image("https://huggingface.co/spaces/zerogpu-aoti/FLUX.1-Kontext-Dev-fp8-dynamic/resolve/main/cat.png")] #multi-image input
|
||||
generator=torch.Generator(device=device).manual_seed(42),
|
||||
num_inference_steps=50,
|
||||
guidance_scale=4,
|
||||
).images[0]
|
||||
|
||||
image.save("flux2_output.png")
|
||||
```
|
||||
|
||||
### Remote text-encoder + H100
|
||||
`pipe.enable_model_cpu_offload()` slows you down a bit. You can move as fast as possible on the H100 with the remote text-encoder
|
||||
```py
|
||||
import torch
|
||||
from diffusers import Flux2Pipeline, Flux2Transformer2DModel
|
||||
from huggingface_hub import get_token
|
||||
import requests
|
||||
import io
|
||||
|
||||
repo_id = "black-forest-labs/FLUX.2-dev"
|
||||
device = "cuda:0"
|
||||
torch_dtype = torch.bfloat16
|
||||
|
||||
def remote_text_encoder(prompts):
|
||||
response = requests.post(
|
||||
"https://remote-text-encoder-flux-2.huggingface.co/predict",
|
||||
json={"prompt": prompts},
|
||||
headers={
|
||||
"Authorization": f"Bearer {get_token()}",
|
||||
"Content-Type": "application/json"
|
||||
}
|
||||
)
|
||||
assert response.status_code == 200, f"{response.status_code=}"
|
||||
prompt_embeds = torch.load(io.BytesIO(response.content))
|
||||
|
||||
return prompt_embeds.to(device)
|
||||
|
||||
pipe = Flux2Pipeline.from_pretrained(
|
||||
repo_id, text_encoder=None, torch_dtype=torch_dtype
|
||||
).to(device)
|
||||
|
||||
prompt = "Realistic macro photograph of a hermit crab using a soda can as its shell, partially emerging from the can, captured with sharp detail and natural colors, on a sunlit beach with soft shadows and a shallow depth of field, with blurred ocean waves in the background. The can has the text `BFL + Diffusers` on it and it has a color gradient that start with #FF5733 at the top and transitions to #33FF57 at the bottom."
|
||||
|
||||
image = pipe(
|
||||
prompt_embeds=remote_text_encoder(prompt),
|
||||
#image=[load_image("https://huggingface.co/spaces/zerogpu-aoti/FLUX.1-Kontext-Dev-fp8-dynamic/resolve/main/cat.png")] #optional multi-image input
|
||||
generator=torch.Generator(device=device).manual_seed(42),
|
||||
num_inference_steps=50,
|
||||
guidance_scale=4,
|
||||
).images[0]
|
||||
|
||||
image.save("flux2_output.png")
|
||||
```
|
||||
|
||||
## 🧮 Other VRAM sizes
|
||||
|
||||
If you have different GPU sizes, you can experiment with different quantizations, for example, for 40-48G VRAM GPUs, (8-bit) quantization instead of 4-bit can be a good trade-off. You can learn more on the [diffusers FLUX.2 release blog](https://huggingface.co/blog/flux2)
|
||||
Reference in New Issue
Block a user