change wecaht app split logic

This commit is contained in:
yichuan520030910320
2025-07-19 19:43:30 -07:00
parent e117743d24
commit 0796a52df1
9 changed files with 112 additions and 54 deletions

View File

@@ -170,7 +170,7 @@ This demo showcases how to build a RAG system for PDF/md documents using Leann.
- **🚀 High-throughput Embedding Pipeline** - Optimized batched processing for maximum efficiency
- **🎯 Two-level Search** - Novel coarse-to-fine search overlap for accelerated query processing (optional)
- **💾 Memory-mapped Indices** - Fast startup with raw text mapping to reduce memory overhead
- **🚀 MLX Support** - Ultra-fast recompute with quantized embedding models, accelerating building and search by 10-100x ([minimal example](test/build_mlx_index.py))
- **🚀 MLX Support** - Ultra-fast recompute/build with quantized embedding models, accelerating building and search ([minimal example](test/build_mlx_index.py))
### 🎨 Developer Experience

View File

@@ -190,16 +190,16 @@ class WeChatHistoryReader(BaseReader):
return False
def _concatenate_messages(self, messages: List[Dict], min_length: int = 128, max_length: int = 1000,
time_window_minutes: int = 30) -> List[Dict]:
def _concatenate_messages(self, messages: List[Dict], max_length: int = 128,
time_window_minutes: int = 30, overlap_messages: int = 0) -> List[Dict]:
"""
Concatenate messages based on length and time rules.
Args:
messages: List of message dictionaries
min_length: Minimum length for concatenated message groups
max_length: Maximum length for concatenated message groups
time_window_minutes: Time window in minutes to group messages together
overlap_messages: Number of messages to overlap between consecutive groups
Returns:
List of concatenated message groups
@@ -235,37 +235,46 @@ class WeChatHistoryReader(BaseReader):
time_diff_minutes = (create_time - last_timestamp) / 60
if time_diff_minutes > time_window_minutes:
# Time gap too large, start new group
if current_group and current_length >= min_length:
if current_group:
concatenated_groups.append({
'messages': current_group,
'total_length': current_length,
'start_time': current_group[0].get('createTime', 0),
'end_time': current_group[-1].get('createTime', 0)
})
current_group = []
current_length = 0
# Keep last few messages for overlap
if overlap_messages > 0 and len(current_group) > overlap_messages:
current_group = current_group[-overlap_messages:]
current_length = sum(len(self._extract_readable_text(msg.get('content', '')) or msg.get('message', '')) for msg in current_group)
else:
current_group = []
current_length = 0
# Check length constraint
message_length = len(readable_text)
if current_length + message_length > max_length and current_group:
# Current group would exceed max length, save it and start new
if current_length >= min_length:
concatenated_groups.append({
'messages': current_group,
'total_length': current_length,
'start_time': current_group[0].get('createTime', 0),
'end_time': current_group[-1].get('createTime', 0)
})
current_group = []
current_length = 0
concatenated_groups.append({
'messages': current_group,
'total_length': current_length,
'start_time': current_group[0].get('createTime', 0),
'end_time': current_group[-1].get('createTime', 0)
})
# Keep last few messages for overlap
if overlap_messages > 0 and len(current_group) > overlap_messages:
current_group = current_group[-overlap_messages:]
current_length = sum(len(self._extract_readable_text(msg.get('content', '')) or msg.get('message', '')) for msg in current_group)
else:
current_group = []
current_length = 0
# Add message to current group
current_group.append(message)
current_length += message_length
last_timestamp = create_time
# Add the last group if it meets minimum length
if current_group and current_length >= min_length:
# Add the last group if it exists
if current_group:
concatenated_groups.append({
'messages': current_group,
'total_length': current_length,
@@ -343,6 +352,12 @@ Contact: {contact_name}
Time Range: {start_time_str} - {end_time_str}
Messages ({len(messages)} messages, {message_group['total_length']} chars):
{concatenated_text}
"""
doc_content = f"""
Contact: {contact_name}
{concatenated_text}
"""
return doc_content
@@ -358,16 +373,15 @@ Messages ({len(messages)} messages, {message_group['total_length']} chars):
wechat_export_dir (str): Custom path to WeChat export directory.
include_non_text (bool): Whether to include non-text messages (images, emojis, etc.)
concatenate_messages (bool): Whether to concatenate messages based on length rules.
min_length (int): Minimum length for concatenated message groups (default: 128).
max_length (int): Maximum length for concatenated message groups (default: 1000).
time_window_minutes (int): Time window in minutes to group messages together (default: 30).
overlap_messages (int): Number of messages to overlap between consecutive groups (default: 2).
"""
docs: List[Document] = []
max_count = load_kwargs.get('max_count', 1000)
wechat_export_dir = load_kwargs.get('wechat_export_dir', None)
include_non_text = load_kwargs.get('include_non_text', False)
concatenate_messages = load_kwargs.get('concatenate_messages', False)
min_length = load_kwargs.get('min_length', 128)
max_length = load_kwargs.get('max_length', 1000)
time_window_minutes = load_kwargs.get('time_window_minutes', 30)
@@ -417,9 +431,9 @@ Messages ({len(messages)} messages, {message_group['total_length']} chars):
# Concatenate messages based on rules
message_groups = self._concatenate_messages(
readable_messages,
min_length=min_length,
max_length=max_length,
time_window_minutes=time_window_minutes
time_window_minutes=time_window_minutes,
overlap_messages=2 # Keep 2 messages overlap between groups
)
# Create documents from concatenated groups

View File

@@ -52,7 +52,7 @@ def create_leann_index_from_multiple_wechat_exports(
documents = reader.load_data(
wechat_export_dir=str(export_dir),
max_count=max_count,
concatenate_messages=False, # Disable concatenation - one message per document
concatenate_messages=True, # Disable concatenation - one message per document
)
if documents:
print(f"Loaded {len(documents)} chat documents from {export_dir}")
@@ -222,9 +222,9 @@ async def query_leann_index(index_path: str, query: str):
print(f"You: {query}")
chat_response = chat.ask(
query,
top_k=5,
top_k=20,
recompute_beighbor_embeddings=True,
complexity=32,
complexity=64,
beam_width=1,
llm_config={
"type": "openai",
@@ -252,7 +252,7 @@ async def main():
parser.add_argument(
"--index-dir",
type=str,
default="./wechat_history_index_leann_test",
default="./wechat_history_june19_test",
help="Directory to store the LEANN index (default: ./wechat_history_index_leann_test)",
)
parser.add_argument(

View File

@@ -600,7 +600,7 @@ def create_embedding_server_thread(
chunk_ids = node_ids[i:end_idx]
if embedding_mode == "mlx":
embeddings_chunk = compute_embeddings_mlx(chunk_texts, model_name)
embeddings_chunk = compute_embeddings_mlx(chunk_texts, model_name, batch_size=16)
elif embedding_mode == "openai":
embeddings_chunk = compute_embeddings_openai(chunk_texts, model_name)
else: # sentence-transformers
@@ -617,7 +617,7 @@ def create_embedding_server_thread(
print(f"INFO: Combined embeddings shape: {hidden.shape}")
else:
if embedding_mode == "mlx":
hidden = compute_embeddings_mlx(texts, model_name)
hidden = compute_embeddings_mlx(texts, model_name, batch_size=16)
elif embedding_mode == "openai":
hidden = compute_embeddings_openai(texts, model_name)
else: # sentence-transformers

View File

@@ -423,7 +423,7 @@ def create_hnsw_embedding_server(
from leann.api import compute_embeddings
# Compute embeddings using MLX
embeddings = compute_embeddings(texts_batch, model_name, use_mlx=True)
embeddings = compute_embeddings(texts_batch, model_name, mode="mlx", use_server=False)
print(
f"[leann_backend_hnsw.hnsw_embedding_server LOG]: MLX embeddings computed for {len(texts_batch)} texts"

View File

@@ -11,7 +11,8 @@ requires-python = ">=3.9"
license = { text = "MIT" }
dependencies = [
"numpy>=1.20.0"
"numpy>=1.20.0",
"tqdm>=4.60.0"
]
[tool.setuptools.packages.find]

View File

@@ -21,7 +21,8 @@ def compute_embeddings(
chunks: List[str],
model_name: str,
mode: str = "sentence-transformers",
use_server: bool = True
use_server: bool = True,
use_mlx: bool = False # Backward compatibility: if True, override mode to 'mlx'
) -> np.ndarray:
"""
Computes embeddings using different backends.
@@ -38,12 +39,16 @@ def compute_embeddings(
Returns:
numpy array of embeddings
"""
# Override mode for backward compatibility
if use_mlx:
mode = "mlx"
# Auto-detect mode based on model name if not explicitly set
if mode == "sentence-transformers" and model_name.startswith("text-embedding-"):
mode = "openai"
if mode == "mlx":
return compute_embeddings_mlx(chunks, model_name)
return compute_embeddings_mlx(chunks, model_name, batch_size=16)
elif mode == "openai":
return compute_embeddings_openai(chunks, model_name)
elif mode == "sentence-transformers":
@@ -144,7 +149,7 @@ def _compute_embeddings_sentence_transformers_direct(chunks: List[str], model_na
# Generate embeddings
# give use an warning if OOM here means we need to turn down the batch size
embeddings = model.encode(
chunks, convert_to_numpy=True, show_progress_bar=True, batch_size=8
chunks, convert_to_numpy=True, show_progress_bar=True, batch_size=16
)
return embeddings
@@ -173,9 +178,17 @@ def compute_embeddings_openai(chunks: List[str], model_name: str) -> np.ndarray:
max_batch_size = 100 # Conservative batch size
all_embeddings = []
for i in range(0, len(chunks), max_batch_size):
try:
from tqdm import tqdm
total_batches = (len(chunks) + max_batch_size - 1) // max_batch_size
batch_range = range(0, len(chunks), max_batch_size)
batch_iterator = tqdm(batch_range, desc="Computing embeddings", unit="batch", total=total_batches)
except ImportError:
# Fallback without progress bar
batch_iterator = range(0, len(chunks), max_batch_size)
for i in batch_iterator:
batch_chunks = chunks[i:i + max_batch_size]
print(f"INFO: Processing batch {i//max_batch_size + 1}/{(len(chunks) + max_batch_size - 1)//max_batch_size}")
try:
response = client.embeddings.create(
@@ -193,42 +206,64 @@ def compute_embeddings_openai(chunks: List[str], model_name: str) -> np.ndarray:
return embeddings
def compute_embeddings_mlx(chunks: List[str], model_name: str) -> np.ndarray:
def compute_embeddings_mlx(chunks: List[str], model_name: str, batch_size: int = 16) -> np.ndarray:
"""Computes embeddings using an MLX model."""
try:
import mlx.core as mx
from mlx_lm.utils import load
from tqdm import tqdm
except ImportError as e:
raise RuntimeError(
"MLX or related libraries not available. Install with: uv pip install mlx mlx-lm"
) from e
print(
f"INFO: Computing embeddings for {len(chunks)} chunks using MLX model '{model_name}'..."
f"INFO: Computing embeddings for {len(chunks)} chunks using MLX model '{model_name}' with batch_size={batch_size}..."
)
# Load model and tokenizer
model, tokenizer = load(model_name)
# Process each chunk
# Process chunks in batches with progress bar
all_embeddings = []
for chunk in chunks:
# Tokenize
token_ids = tokenizer.encode(chunk) # type: ignore
try:
from tqdm import tqdm
batch_iterator = tqdm(range(0, len(chunks), batch_size), desc="Computing embeddings", unit="batch")
except ImportError:
batch_iterator = range(0, len(chunks), batch_size)
for i in batch_iterator:
batch_chunks = chunks[i:i + batch_size]
# Tokenize all chunks in the batch
batch_token_ids = []
for chunk in batch_chunks:
token_ids = tokenizer.encode(chunk) # type: ignore
batch_token_ids.append(token_ids)
# Pad sequences to the same length for batch processing
max_length = max(len(ids) for ids in batch_token_ids)
padded_token_ids = []
for token_ids in batch_token_ids:
# Pad with tokenizer.pad_token_id or 0
padded = token_ids + [0] * (max_length - len(token_ids))
padded_token_ids.append(padded)
# Convert to MLX array with batch dimension
input_ids = mx.array(padded_token_ids)
# Convert to MLX array and add batch dimension
input_ids = mx.array([token_ids])
# Get embeddings
# Get embeddings for the batch
embeddings = model(input_ids)
# Mean pooling (since we only have one sequence, just take the mean)
pooled = embeddings.mean(axis=1) # Shape: (1, hidden_size)
# Mean pooling for each sequence in the batch
pooled = embeddings.mean(axis=1) # Shape: (batch_size, hidden_size)
# Convert individual embedding to numpy via list (to handle bfloat16)
pooled_list = pooled[0].tolist() # Remove batch dimension and convert to list
pooled_numpy = np.array(pooled_list, dtype=np.float32)
all_embeddings.append(pooled_numpy)
# Convert batch embeddings to numpy
for j in range(len(batch_chunks)):
pooled_list = pooled[j].tolist() # Convert to list
pooled_numpy = np.array(pooled_list, dtype=np.float32)
all_embeddings.append(pooled_numpy)
# Stack numpy arrays
return np.stack(all_embeddings)
@@ -294,6 +329,8 @@ class LeannBuilder:
self.dimensions = dimensions
self.embedding_mode = embedding_mode
self.backend_kwargs = backend_kwargs
if 'mlx' in self.embedding_model:
self.embedding_mode = "mlx"
self.chunks: List[Dict[str, Any]] = []
def add_text(self, text: str, metadata: Optional[Dict[str, Any]] = None):
@@ -318,7 +355,13 @@ class LeannBuilder:
offset_file = index_dir / f"{index_name}.passages.idx"
offset_map = {}
with open(passages_file, "w", encoding="utf-8") as f:
for chunk in self.chunks:
try:
from tqdm import tqdm
chunk_iterator = tqdm(self.chunks, desc="Writing passages", unit="chunk")
except ImportError:
chunk_iterator = self.chunks
for chunk in chunk_iterator:
offset = f.tell()
json.dump(
{

View File

@@ -175,7 +175,7 @@ class EmbeddingServerManager:
self.backend_module_name = backend_module_name
self.server_process: Optional[subprocess.Popen] = None
self.server_port: Optional[int] = None
# atexit.register(self.stop_server)
atexit.register(self.stop_server)
def start_server(self, port: int, model_name: str, embedding_mode: str = "sentence-transformers", **kwargs) -> bool:
"""

View File

@@ -264,7 +264,7 @@ def run_mlx_benchmark():
}
config = BenchmarkConfig(
model_path="mlx-community/Qwen3-Embedding-0.6B-4bit-DWQ",
model_path="mlx-community/all-MiniLM-L6-v2-4bit",
use_mlx=True
)