change wecaht app split logic
This commit is contained in:
@@ -170,7 +170,7 @@ This demo showcases how to build a RAG system for PDF/md documents using Leann.
|
||||
- **🚀 High-throughput Embedding Pipeline** - Optimized batched processing for maximum efficiency
|
||||
- **🎯 Two-level Search** - Novel coarse-to-fine search overlap for accelerated query processing (optional)
|
||||
- **💾 Memory-mapped Indices** - Fast startup with raw text mapping to reduce memory overhead
|
||||
- **🚀 MLX Support** - Ultra-fast recompute with quantized embedding models, accelerating building and search by 10-100x ([minimal example](test/build_mlx_index.py))
|
||||
- **🚀 MLX Support** - Ultra-fast recompute/build with quantized embedding models, accelerating building and search ([minimal example](test/build_mlx_index.py))
|
||||
|
||||
### 🎨 Developer Experience
|
||||
|
||||
|
||||
@@ -190,16 +190,16 @@ class WeChatHistoryReader(BaseReader):
|
||||
|
||||
return False
|
||||
|
||||
def _concatenate_messages(self, messages: List[Dict], min_length: int = 128, max_length: int = 1000,
|
||||
time_window_minutes: int = 30) -> List[Dict]:
|
||||
def _concatenate_messages(self, messages: List[Dict], max_length: int = 128,
|
||||
time_window_minutes: int = 30, overlap_messages: int = 0) -> List[Dict]:
|
||||
"""
|
||||
Concatenate messages based on length and time rules.
|
||||
|
||||
Args:
|
||||
messages: List of message dictionaries
|
||||
min_length: Minimum length for concatenated message groups
|
||||
max_length: Maximum length for concatenated message groups
|
||||
time_window_minutes: Time window in minutes to group messages together
|
||||
overlap_messages: Number of messages to overlap between consecutive groups
|
||||
|
||||
Returns:
|
||||
List of concatenated message groups
|
||||
@@ -235,37 +235,46 @@ class WeChatHistoryReader(BaseReader):
|
||||
time_diff_minutes = (create_time - last_timestamp) / 60
|
||||
if time_diff_minutes > time_window_minutes:
|
||||
# Time gap too large, start new group
|
||||
if current_group and current_length >= min_length:
|
||||
if current_group:
|
||||
concatenated_groups.append({
|
||||
'messages': current_group,
|
||||
'total_length': current_length,
|
||||
'start_time': current_group[0].get('createTime', 0),
|
||||
'end_time': current_group[-1].get('createTime', 0)
|
||||
})
|
||||
current_group = []
|
||||
current_length = 0
|
||||
# Keep last few messages for overlap
|
||||
if overlap_messages > 0 and len(current_group) > overlap_messages:
|
||||
current_group = current_group[-overlap_messages:]
|
||||
current_length = sum(len(self._extract_readable_text(msg.get('content', '')) or msg.get('message', '')) for msg in current_group)
|
||||
else:
|
||||
current_group = []
|
||||
current_length = 0
|
||||
|
||||
# Check length constraint
|
||||
message_length = len(readable_text)
|
||||
if current_length + message_length > max_length and current_group:
|
||||
# Current group would exceed max length, save it and start new
|
||||
if current_length >= min_length:
|
||||
concatenated_groups.append({
|
||||
'messages': current_group,
|
||||
'total_length': current_length,
|
||||
'start_time': current_group[0].get('createTime', 0),
|
||||
'end_time': current_group[-1].get('createTime', 0)
|
||||
})
|
||||
current_group = []
|
||||
current_length = 0
|
||||
concatenated_groups.append({
|
||||
'messages': current_group,
|
||||
'total_length': current_length,
|
||||
'start_time': current_group[0].get('createTime', 0),
|
||||
'end_time': current_group[-1].get('createTime', 0)
|
||||
})
|
||||
# Keep last few messages for overlap
|
||||
if overlap_messages > 0 and len(current_group) > overlap_messages:
|
||||
current_group = current_group[-overlap_messages:]
|
||||
current_length = sum(len(self._extract_readable_text(msg.get('content', '')) or msg.get('message', '')) for msg in current_group)
|
||||
else:
|
||||
current_group = []
|
||||
current_length = 0
|
||||
|
||||
# Add message to current group
|
||||
current_group.append(message)
|
||||
current_length += message_length
|
||||
last_timestamp = create_time
|
||||
|
||||
# Add the last group if it meets minimum length
|
||||
if current_group and current_length >= min_length:
|
||||
# Add the last group if it exists
|
||||
if current_group:
|
||||
concatenated_groups.append({
|
||||
'messages': current_group,
|
||||
'total_length': current_length,
|
||||
@@ -343,6 +352,12 @@ Contact: {contact_name}
|
||||
Time Range: {start_time_str} - {end_time_str}
|
||||
Messages ({len(messages)} messages, {message_group['total_length']} chars):
|
||||
|
||||
{concatenated_text}
|
||||
"""
|
||||
|
||||
doc_content = f"""
|
||||
Contact: {contact_name}
|
||||
|
||||
{concatenated_text}
|
||||
"""
|
||||
return doc_content
|
||||
@@ -358,16 +373,15 @@ Messages ({len(messages)} messages, {message_group['total_length']} chars):
|
||||
wechat_export_dir (str): Custom path to WeChat export directory.
|
||||
include_non_text (bool): Whether to include non-text messages (images, emojis, etc.)
|
||||
concatenate_messages (bool): Whether to concatenate messages based on length rules.
|
||||
min_length (int): Minimum length for concatenated message groups (default: 128).
|
||||
max_length (int): Maximum length for concatenated message groups (default: 1000).
|
||||
time_window_minutes (int): Time window in minutes to group messages together (default: 30).
|
||||
overlap_messages (int): Number of messages to overlap between consecutive groups (default: 2).
|
||||
"""
|
||||
docs: List[Document] = []
|
||||
max_count = load_kwargs.get('max_count', 1000)
|
||||
wechat_export_dir = load_kwargs.get('wechat_export_dir', None)
|
||||
include_non_text = load_kwargs.get('include_non_text', False)
|
||||
concatenate_messages = load_kwargs.get('concatenate_messages', False)
|
||||
min_length = load_kwargs.get('min_length', 128)
|
||||
max_length = load_kwargs.get('max_length', 1000)
|
||||
time_window_minutes = load_kwargs.get('time_window_minutes', 30)
|
||||
|
||||
@@ -417,9 +431,9 @@ Messages ({len(messages)} messages, {message_group['total_length']} chars):
|
||||
# Concatenate messages based on rules
|
||||
message_groups = self._concatenate_messages(
|
||||
readable_messages,
|
||||
min_length=min_length,
|
||||
max_length=max_length,
|
||||
time_window_minutes=time_window_minutes
|
||||
time_window_minutes=time_window_minutes,
|
||||
overlap_messages=2 # Keep 2 messages overlap between groups
|
||||
)
|
||||
|
||||
# Create documents from concatenated groups
|
||||
|
||||
@@ -52,7 +52,7 @@ def create_leann_index_from_multiple_wechat_exports(
|
||||
documents = reader.load_data(
|
||||
wechat_export_dir=str(export_dir),
|
||||
max_count=max_count,
|
||||
concatenate_messages=False, # Disable concatenation - one message per document
|
||||
concatenate_messages=True, # Disable concatenation - one message per document
|
||||
)
|
||||
if documents:
|
||||
print(f"Loaded {len(documents)} chat documents from {export_dir}")
|
||||
@@ -222,9 +222,9 @@ async def query_leann_index(index_path: str, query: str):
|
||||
print(f"You: {query}")
|
||||
chat_response = chat.ask(
|
||||
query,
|
||||
top_k=5,
|
||||
top_k=20,
|
||||
recompute_beighbor_embeddings=True,
|
||||
complexity=32,
|
||||
complexity=64,
|
||||
beam_width=1,
|
||||
llm_config={
|
||||
"type": "openai",
|
||||
@@ -252,7 +252,7 @@ async def main():
|
||||
parser.add_argument(
|
||||
"--index-dir",
|
||||
type=str,
|
||||
default="./wechat_history_index_leann_test",
|
||||
default="./wechat_history_june19_test",
|
||||
help="Directory to store the LEANN index (default: ./wechat_history_index_leann_test)",
|
||||
)
|
||||
parser.add_argument(
|
||||
|
||||
@@ -600,7 +600,7 @@ def create_embedding_server_thread(
|
||||
chunk_ids = node_ids[i:end_idx]
|
||||
|
||||
if embedding_mode == "mlx":
|
||||
embeddings_chunk = compute_embeddings_mlx(chunk_texts, model_name)
|
||||
embeddings_chunk = compute_embeddings_mlx(chunk_texts, model_name, batch_size=16)
|
||||
elif embedding_mode == "openai":
|
||||
embeddings_chunk = compute_embeddings_openai(chunk_texts, model_name)
|
||||
else: # sentence-transformers
|
||||
@@ -617,7 +617,7 @@ def create_embedding_server_thread(
|
||||
print(f"INFO: Combined embeddings shape: {hidden.shape}")
|
||||
else:
|
||||
if embedding_mode == "mlx":
|
||||
hidden = compute_embeddings_mlx(texts, model_name)
|
||||
hidden = compute_embeddings_mlx(texts, model_name, batch_size=16)
|
||||
elif embedding_mode == "openai":
|
||||
hidden = compute_embeddings_openai(texts, model_name)
|
||||
else: # sentence-transformers
|
||||
|
||||
@@ -423,7 +423,7 @@ def create_hnsw_embedding_server(
|
||||
from leann.api import compute_embeddings
|
||||
|
||||
# Compute embeddings using MLX
|
||||
embeddings = compute_embeddings(texts_batch, model_name, use_mlx=True)
|
||||
embeddings = compute_embeddings(texts_batch, model_name, mode="mlx", use_server=False)
|
||||
|
||||
print(
|
||||
f"[leann_backend_hnsw.hnsw_embedding_server LOG]: MLX embeddings computed for {len(texts_batch)} texts"
|
||||
|
||||
@@ -11,7 +11,8 @@ requires-python = ">=3.9"
|
||||
license = { text = "MIT" }
|
||||
|
||||
dependencies = [
|
||||
"numpy>=1.20.0"
|
||||
"numpy>=1.20.0",
|
||||
"tqdm>=4.60.0"
|
||||
]
|
||||
|
||||
[tool.setuptools.packages.find]
|
||||
|
||||
@@ -21,7 +21,8 @@ def compute_embeddings(
|
||||
chunks: List[str],
|
||||
model_name: str,
|
||||
mode: str = "sentence-transformers",
|
||||
use_server: bool = True
|
||||
use_server: bool = True,
|
||||
use_mlx: bool = False # Backward compatibility: if True, override mode to 'mlx'
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Computes embeddings using different backends.
|
||||
@@ -38,12 +39,16 @@ def compute_embeddings(
|
||||
Returns:
|
||||
numpy array of embeddings
|
||||
"""
|
||||
# Override mode for backward compatibility
|
||||
if use_mlx:
|
||||
mode = "mlx"
|
||||
|
||||
# Auto-detect mode based on model name if not explicitly set
|
||||
if mode == "sentence-transformers" and model_name.startswith("text-embedding-"):
|
||||
mode = "openai"
|
||||
|
||||
if mode == "mlx":
|
||||
return compute_embeddings_mlx(chunks, model_name)
|
||||
return compute_embeddings_mlx(chunks, model_name, batch_size=16)
|
||||
elif mode == "openai":
|
||||
return compute_embeddings_openai(chunks, model_name)
|
||||
elif mode == "sentence-transformers":
|
||||
@@ -144,7 +149,7 @@ def _compute_embeddings_sentence_transformers_direct(chunks: List[str], model_na
|
||||
# Generate embeddings
|
||||
# give use an warning if OOM here means we need to turn down the batch size
|
||||
embeddings = model.encode(
|
||||
chunks, convert_to_numpy=True, show_progress_bar=True, batch_size=8
|
||||
chunks, convert_to_numpy=True, show_progress_bar=True, batch_size=16
|
||||
)
|
||||
|
||||
return embeddings
|
||||
@@ -173,9 +178,17 @@ def compute_embeddings_openai(chunks: List[str], model_name: str) -> np.ndarray:
|
||||
max_batch_size = 100 # Conservative batch size
|
||||
all_embeddings = []
|
||||
|
||||
for i in range(0, len(chunks), max_batch_size):
|
||||
try:
|
||||
from tqdm import tqdm
|
||||
total_batches = (len(chunks) + max_batch_size - 1) // max_batch_size
|
||||
batch_range = range(0, len(chunks), max_batch_size)
|
||||
batch_iterator = tqdm(batch_range, desc="Computing embeddings", unit="batch", total=total_batches)
|
||||
except ImportError:
|
||||
# Fallback without progress bar
|
||||
batch_iterator = range(0, len(chunks), max_batch_size)
|
||||
|
||||
for i in batch_iterator:
|
||||
batch_chunks = chunks[i:i + max_batch_size]
|
||||
print(f"INFO: Processing batch {i//max_batch_size + 1}/{(len(chunks) + max_batch_size - 1)//max_batch_size}")
|
||||
|
||||
try:
|
||||
response = client.embeddings.create(
|
||||
@@ -193,42 +206,64 @@ def compute_embeddings_openai(chunks: List[str], model_name: str) -> np.ndarray:
|
||||
return embeddings
|
||||
|
||||
|
||||
def compute_embeddings_mlx(chunks: List[str], model_name: str) -> np.ndarray:
|
||||
def compute_embeddings_mlx(chunks: List[str], model_name: str, batch_size: int = 16) -> np.ndarray:
|
||||
"""Computes embeddings using an MLX model."""
|
||||
try:
|
||||
import mlx.core as mx
|
||||
from mlx_lm.utils import load
|
||||
from tqdm import tqdm
|
||||
except ImportError as e:
|
||||
raise RuntimeError(
|
||||
"MLX or related libraries not available. Install with: uv pip install mlx mlx-lm"
|
||||
) from e
|
||||
|
||||
print(
|
||||
f"INFO: Computing embeddings for {len(chunks)} chunks using MLX model '{model_name}'..."
|
||||
f"INFO: Computing embeddings for {len(chunks)} chunks using MLX model '{model_name}' with batch_size={batch_size}..."
|
||||
)
|
||||
|
||||
# Load model and tokenizer
|
||||
model, tokenizer = load(model_name)
|
||||
|
||||
# Process each chunk
|
||||
# Process chunks in batches with progress bar
|
||||
all_embeddings = []
|
||||
for chunk in chunks:
|
||||
# Tokenize
|
||||
token_ids = tokenizer.encode(chunk) # type: ignore
|
||||
|
||||
try:
|
||||
from tqdm import tqdm
|
||||
batch_iterator = tqdm(range(0, len(chunks), batch_size), desc="Computing embeddings", unit="batch")
|
||||
except ImportError:
|
||||
batch_iterator = range(0, len(chunks), batch_size)
|
||||
|
||||
for i in batch_iterator:
|
||||
batch_chunks = chunks[i:i + batch_size]
|
||||
|
||||
# Tokenize all chunks in the batch
|
||||
batch_token_ids = []
|
||||
for chunk in batch_chunks:
|
||||
token_ids = tokenizer.encode(chunk) # type: ignore
|
||||
batch_token_ids.append(token_ids)
|
||||
|
||||
# Pad sequences to the same length for batch processing
|
||||
max_length = max(len(ids) for ids in batch_token_ids)
|
||||
padded_token_ids = []
|
||||
for token_ids in batch_token_ids:
|
||||
# Pad with tokenizer.pad_token_id or 0
|
||||
padded = token_ids + [0] * (max_length - len(token_ids))
|
||||
padded_token_ids.append(padded)
|
||||
|
||||
# Convert to MLX array with batch dimension
|
||||
input_ids = mx.array(padded_token_ids)
|
||||
|
||||
# Convert to MLX array and add batch dimension
|
||||
input_ids = mx.array([token_ids])
|
||||
|
||||
# Get embeddings
|
||||
# Get embeddings for the batch
|
||||
embeddings = model(input_ids)
|
||||
|
||||
# Mean pooling (since we only have one sequence, just take the mean)
|
||||
pooled = embeddings.mean(axis=1) # Shape: (1, hidden_size)
|
||||
# Mean pooling for each sequence in the batch
|
||||
pooled = embeddings.mean(axis=1) # Shape: (batch_size, hidden_size)
|
||||
|
||||
# Convert individual embedding to numpy via list (to handle bfloat16)
|
||||
pooled_list = pooled[0].tolist() # Remove batch dimension and convert to list
|
||||
pooled_numpy = np.array(pooled_list, dtype=np.float32)
|
||||
all_embeddings.append(pooled_numpy)
|
||||
# Convert batch embeddings to numpy
|
||||
for j in range(len(batch_chunks)):
|
||||
pooled_list = pooled[j].tolist() # Convert to list
|
||||
pooled_numpy = np.array(pooled_list, dtype=np.float32)
|
||||
all_embeddings.append(pooled_numpy)
|
||||
|
||||
# Stack numpy arrays
|
||||
return np.stack(all_embeddings)
|
||||
@@ -294,6 +329,8 @@ class LeannBuilder:
|
||||
self.dimensions = dimensions
|
||||
self.embedding_mode = embedding_mode
|
||||
self.backend_kwargs = backend_kwargs
|
||||
if 'mlx' in self.embedding_model:
|
||||
self.embedding_mode = "mlx"
|
||||
self.chunks: List[Dict[str, Any]] = []
|
||||
|
||||
def add_text(self, text: str, metadata: Optional[Dict[str, Any]] = None):
|
||||
@@ -318,7 +355,13 @@ class LeannBuilder:
|
||||
offset_file = index_dir / f"{index_name}.passages.idx"
|
||||
offset_map = {}
|
||||
with open(passages_file, "w", encoding="utf-8") as f:
|
||||
for chunk in self.chunks:
|
||||
try:
|
||||
from tqdm import tqdm
|
||||
chunk_iterator = tqdm(self.chunks, desc="Writing passages", unit="chunk")
|
||||
except ImportError:
|
||||
chunk_iterator = self.chunks
|
||||
|
||||
for chunk in chunk_iterator:
|
||||
offset = f.tell()
|
||||
json.dump(
|
||||
{
|
||||
|
||||
@@ -175,7 +175,7 @@ class EmbeddingServerManager:
|
||||
self.backend_module_name = backend_module_name
|
||||
self.server_process: Optional[subprocess.Popen] = None
|
||||
self.server_port: Optional[int] = None
|
||||
# atexit.register(self.stop_server)
|
||||
atexit.register(self.stop_server)
|
||||
|
||||
def start_server(self, port: int, model_name: str, embedding_mode: str = "sentence-transformers", **kwargs) -> bool:
|
||||
"""
|
||||
|
||||
@@ -264,7 +264,7 @@ def run_mlx_benchmark():
|
||||
}
|
||||
|
||||
config = BenchmarkConfig(
|
||||
model_path="mlx-community/Qwen3-Embedding-0.6B-4bit-DWQ",
|
||||
model_path="mlx-community/all-MiniLM-L6-v2-4bit",
|
||||
use_mlx=True
|
||||
)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user