reproduce docvqa results

This commit is contained in:
yichuan-w
2025-11-14 10:22:42 +00:00
parent ae3b8af3df
commit 07afe546ea
3 changed files with 666 additions and 237 deletions

View File

@@ -223,17 +223,13 @@ def _embed_queries(model, processor, queries: list[str]) -> list[Any]:
model.eval()
# Match MTEB's exact query processing from ColPaliEngineWrapper.get_text_embeddings:
# 1. MTEB receives batch["text"] which may already include instruction/prompt
# 1. MTEB receives batch["text"] which already includes instruction/prompt (from _combine_queries_with_instruction_text)
# 2. Manually adds: query_prefix + text + query_augmentation_token * 10
# 3. Calls processor.process_queries(batch) where batch is now a list of strings
# 4. process_queries adds: query_prefix + text + suffix (suffix = query_augmentation_token * 10)
#
# However, MTEB's approach results in duplicate addition (20 tokens total).
# Since we're already adding the prompt in search_queries, let's try:
# Option 1: Just call process_queries (let it handle all additions) - avoids duplicate
# Option 2: Manual add + process_texts (to avoid duplicate)
#
# Testing shows Option 1 works better - just call process_queries without manual addition
# This results in duplicate addition: query_prefix is added twice, query_augmentation_token * 20 total
# We need to match this exactly to reproduce MTEB results
all_embeds = []
batch_size = 32 # Match MTEB's default batch_size
@@ -242,9 +238,15 @@ def _embed_queries(model, processor, queries: list[str]) -> list[Any]:
for i in tqdm(range(0, len(queries), batch_size), desc="Embedding queries"):
batch_queries = queries[i:i + batch_size]
# Just call process_queries - it will add query_prefix + text + 10 tokens
# This avoids duplicate addition that happens in MTEB's approach
inputs = processor.process_queries(batch_queries)
# Match MTEB: manually add query_prefix + text + query_augmentation_token * 10
# Then process_queries will add them again (resulting in 20 augmentation tokens total)
batch = [
processor.query_prefix
+ t
+ processor.query_augmentation_token * 10
for t in batch_queries
]
inputs = processor.process_queries(batch)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
if model.device.type == "cuda":
@@ -1044,3 +1046,249 @@ class LeannMultiVector:
"image_path": meta.get("image_path", ""),
}
return None
class ViDoReBenchmarkEvaluator:
"""
A reusable class for evaluating ViDoRe benchmarks (v1 and v2).
This class encapsulates common functionality for building indexes, searching, and evaluating.
"""
def __init__(
self,
model_name: str,
use_fast_plaid: bool = False,
top_k: int = 100,
first_stage_k: int = 500,
k_values: list[int] = None,
):
"""
Initialize the evaluator.
Args:
model_name: Model name ("colqwen2" or "colpali")
use_fast_plaid: Whether to use Fast-Plaid instead of LEANN
top_k: Top-k results to retrieve
first_stage_k: First stage k for LEANN search
k_values: List of k values for evaluation metrics
"""
self.model_name = model_name
self.use_fast_plaid = use_fast_plaid
self.top_k = top_k
self.first_stage_k = first_stage_k
self.k_values = k_values if k_values is not None else [1, 3, 5, 10, 100]
# Load model once (can be reused across tasks)
self._model = None
self._processor = None
self._model_name_actual = None
def _load_model_if_needed(self):
"""Lazy load the model."""
if self._model is None:
print(f"\nLoading model: {self.model_name}")
self._model_name_actual, self._model, self._processor, _, _, _ = _load_colvision(self.model_name)
print(f"Model loaded: {self._model_name_actual}")
def build_index_from_corpus(
self,
corpus: dict[str, Image.Image],
index_path: str,
rebuild: bool = False,
) -> tuple[Any, list[str]]:
"""
Build index from corpus images.
Args:
corpus: dict mapping corpus_id to PIL Image
index_path: Path to save/load the index
rebuild: Whether to rebuild even if index exists
Returns:
tuple: (retriever or fast_plaid_index object, list of corpus_ids in order)
"""
self._load_model_if_needed()
# Ensure consistent ordering
corpus_ids = sorted(corpus.keys())
images = [corpus[cid] for cid in corpus_ids]
if self.use_fast_plaid:
# Check if Fast-Plaid index exists
if not rebuild and _load_fast_plaid_index_if_exists(index_path) is not None:
print(f"Fast-Plaid index already exists at {index_path}")
return _load_fast_plaid_index_if_exists(index_path), corpus_ids
print(f"Building Fast-Plaid index at {index_path}...")
print("Embedding images...")
doc_vecs = _embed_images(self._model, self._processor, images)
fast_plaid_index, build_time = _build_fast_plaid_index(
index_path, doc_vecs, corpus_ids, images
)
print(f"Fast-Plaid index built in {build_time:.2f}s")
return fast_plaid_index, corpus_ids
else:
# Check if LEANN index exists
if not rebuild:
retriever = _load_retriever_if_index_exists(index_path)
if retriever is not None:
print(f"LEANN index already exists at {index_path}")
return retriever, corpus_ids
print(f"Building LEANN index at {index_path}...")
print("Embedding images...")
doc_vecs = _embed_images(self._model, self._processor, images)
retriever = _build_index(index_path, doc_vecs, corpus_ids, images)
print(f"LEANN index built")
return retriever, corpus_ids
def search_queries(
self,
queries: dict[str, str],
corpus_ids: list[str],
index_or_retriever: Any,
fast_plaid_index_path: Optional[str] = None,
task_prompt: Optional[dict[str, str]] = None,
) -> dict[str, dict[str, float]]:
"""
Search queries against the index.
Args:
queries: dict mapping query_id to query text
corpus_ids: list of corpus_ids in the same order as the index
index_or_retriever: index or retriever object
fast_plaid_index_path: path to Fast-Plaid index (for metadata)
task_prompt: Optional dict with prompt for query (e.g., {"query": "..."})
Returns:
results: dict mapping query_id to dict of {corpus_id: score}
"""
self._load_model_if_needed()
print(f"Searching {len(queries)} queries (top_k={self.top_k})...")
query_ids = list(queries.keys())
query_texts = [queries[qid] for qid in query_ids]
# Note: ColPaliEngineWrapper does NOT use task prompt from metadata
# It uses query_prefix + text + query_augmentation_token (handled in _embed_queries)
# So we don't append task_prompt here to match MTEB behavior
# Embed queries
print("Embedding queries...")
query_vecs = _embed_queries(self._model, self._processor, query_texts)
results = {}
for query_id, query_vec in zip(tqdm(query_ids, desc="Searching"), query_vecs):
if self.use_fast_plaid:
# Fast-Plaid search
search_results, _ = _search_fast_plaid(index_or_retriever, query_vec, self.top_k)
query_results = {}
for score, doc_id in search_results:
if doc_id < len(corpus_ids):
corpus_id = corpus_ids[doc_id]
query_results[corpus_id] = float(score)
else:
# LEANN search
import torch
query_np = query_vec.float().numpy() if isinstance(query_vec, torch.Tensor) else query_vec
search_results = index_or_retriever.search_exact_all(query_np, topk=self.top_k)
query_results = {}
for score, doc_id in search_results:
if doc_id < len(corpus_ids):
corpus_id = corpus_ids[doc_id]
query_results[corpus_id] = float(score)
results[query_id] = query_results
return results
@staticmethod
def evaluate_results(
results: dict[str, dict[str, float]],
qrels: dict[str, dict[str, int]],
k_values: list[int] = None,
) -> dict[str, float]:
"""
Evaluate retrieval results using NDCG and other metrics.
Args:
results: dict mapping query_id to dict of {corpus_id: score}
qrels: dict mapping query_id to dict of {corpus_id: relevance_score}
k_values: List of k values for evaluation metrics
Returns:
Dictionary of metric scores
"""
try:
import pytrec_eval
from mteb._evaluators.retrieval_metrics import (
calculate_retrieval_scores,
make_score_dict,
)
except ImportError:
raise ImportError("pytrec_eval is required for evaluation. Install with: pip install pytrec-eval")
if k_values is None:
k_values = [1, 3, 5, 10, 100]
# Check if we have any queries to evaluate
if len(results) == 0:
print("Warning: No queries to evaluate. Returning zero scores.")
scores = {}
for k in k_values:
scores[f"ndcg_at_{k}"] = 0.0
scores[f"map_at_{k}"] = 0.0
scores[f"recall_at_{k}"] = 0.0
scores[f"precision_at_{k}"] = 0.0
scores[f"mrr_at_{k}"] = 0.0
return scores
print(f"Evaluating results with k_values={k_values}...")
print(f"Before filtering: {len(results)} results, {len(qrels)} qrels")
# Filter to ensure qrels and results have the same query set
# This matches MTEB behavior: only evaluate queries that exist in both
# pytrec_eval only evaluates queries in qrels, so we need to ensure
# results contains all queries in qrels, and filter out queries not in qrels
results_filtered = {qid: res for qid, res in results.items() if qid in qrels}
qrels_filtered = {qid: rel_docs for qid, rel_docs in qrels.items() if qid in results_filtered}
print(f"After filtering: {len(results_filtered)} results, {len(qrels_filtered)} qrels")
if len(results_filtered) != len(qrels_filtered):
print(f"Warning: Mismatch between results ({len(results_filtered)}) and qrels ({len(qrels_filtered)}) queries")
missing_in_results = set(qrels.keys()) - set(results.keys())
if missing_in_results:
print(f"Queries in qrels but not in results: {len(missing_in_results)} queries")
print(f"First 5 missing queries: {list(missing_in_results)[:5]}")
# Convert qrels to pytrec_eval format
qrels_pytrec = {}
for qid, rel_docs in qrels_filtered.items():
qrels_pytrec[qid] = {did: score for did, score in rel_docs.items()}
# Evaluate
eval_result = calculate_retrieval_scores(
results=results_filtered,
qrels=qrels_pytrec,
k_values=k_values,
)
# Format scores
scores = make_score_dict(
ndcg=eval_result.ndcg,
_map=eval_result.map,
recall=eval_result.recall,
precision=eval_result.precision,
mrr=eval_result.mrr,
naucs=eval_result.naucs,
naucs_mrr=eval_result.naucs_mrr,
cv_recall=eval_result.cv_recall,
task_scores={},
)
return scores

View File

@@ -0,0 +1,389 @@
#!/usr/bin/env python3
"""
Modular script to reproduce NDCG results for ViDoRe v1 benchmark.
This script uses the interface from leann_multi_vector.py to:
1. Download ViDoRe v1 datasets
2. Build indexes (LEANN or Fast-Plaid)
3. Perform retrieval
4. Evaluate using NDCG metrics
Usage:
# Evaluate all ViDoRe v1 tasks
python vidore_v1_benchmark.py --model colqwen2 --tasks all
# Evaluate specific task
python vidore_v1_benchmark.py --model colqwen2 --task VidoreArxivQARetrieval
# Use Fast-Plaid index
python vidore_v1_benchmark.py --model colqwen2 --use-fast-plaid --fast-plaid-index-path ./indexes/vidore_fastplaid
# Rebuild index
python vidore_v1_benchmark.py --model colqwen2 --rebuild-index
"""
import argparse
import json
import os
from typing import Optional
from datasets import load_dataset
from PIL import Image
from leann_multi_vector import (
_ensure_repo_paths_importable,
ViDoReBenchmarkEvaluator,
)
_ensure_repo_paths_importable(__file__)
# ViDoRe v1 task configurations
# Prompts match MTEB task metadata prompts
VIDORE_V1_TASKS = {
"VidoreArxivQARetrieval": {
"dataset_path": "vidore/arxivqa_test_subsampled_beir",
"revision": "7d94d570960eac2408d3baa7a33f9de4822ae3e4",
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
},
"VidoreDocVQARetrieval": {
"dataset_path": "vidore/docvqa_test_subsampled_beir",
"revision": "162ba2fc1a8437eda8b6c37b240bc1c0f0deb092",
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
},
"VidoreInfoVQARetrieval": {
"dataset_path": "vidore/infovqa_test_subsampled_beir",
"revision": "b802cc5fd6c605df2d673a963667d74881d2c9a4",
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
},
"VidoreTabfquadRetrieval": {
"dataset_path": "vidore/tabfquad_test_subsampled_beir",
"revision": "61a2224bcd29b7b261a4892ff4c8bea353527a31",
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
},
"VidoreTatdqaRetrieval": {
"dataset_path": "vidore/tatdqa_test_beir",
"revision": "5feb5630fdff4d8d189ffedb2dba56862fdd45c0",
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
},
"VidoreShiftProjectRetrieval": {
"dataset_path": "vidore/shiftproject_test_beir",
"revision": "84a382e05c4473fed9cff2bbae95fe2379416117",
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
},
"VidoreSyntheticDocQAAIRetrieval": {
"dataset_path": "vidore/syntheticDocQA_artificial_intelligence_test_beir",
"revision": "2d9ebea5a1c6e9ef4a3b902a612f605dca11261c",
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
},
"VidoreSyntheticDocQAEnergyRetrieval": {
"dataset_path": "vidore/syntheticDocQA_energy_test_beir",
"revision": "9935aadbad5c8deec30910489db1b2c7133ae7a7",
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
},
"VidoreSyntheticDocQAGovernmentReportsRetrieval": {
"dataset_path": "vidore/syntheticDocQA_government_reports_test_beir",
"revision": "b4909afa930f81282fd20601e860668073ad02aa",
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
},
"VidoreSyntheticDocQAHealthcareIndustryRetrieval": {
"dataset_path": "vidore/syntheticDocQA_healthcare_industry_test_beir",
"revision": "f9e25d5b6e13e1ad9f5c3cce202565031b3ab164",
"prompt": {"query": "Find a screenshot that relevant to the user's question."},
},
}
def load_vidore_v1_data(
dataset_path: str,
revision: Optional[str] = None,
split: str = "test",
):
"""
Load ViDoRe v1 dataset.
Returns:
corpus: dict mapping corpus_id to PIL Image
queries: dict mapping query_id to query text
qrels: dict mapping query_id to dict of {corpus_id: relevance_score}
"""
print(f"Loading dataset: {dataset_path} (split={split})")
# Load queries
query_ds = load_dataset(dataset_path, "queries", split=split, revision=revision)
queries = {}
for row in query_ds:
query_id = f"query-{split}-{row['query-id']}"
queries[query_id] = row["query"]
# Load corpus (images)
corpus_ds = load_dataset(dataset_path, "corpus", split=split, revision=revision)
corpus = {}
for row in corpus_ds:
corpus_id = f"corpus-{split}-{row['corpus-id']}"
# Extract image from the dataset row
if "image" in row:
corpus[corpus_id] = row["image"]
elif "page_image" in row:
corpus[corpus_id] = row["page_image"]
else:
raise ValueError(f"No image field found in corpus. Available fields: {list(row.keys())}")
# Load qrels (relevance judgments)
qrels_ds = load_dataset(dataset_path, "qrels", split=split, revision=revision)
qrels = {}
for row in qrels_ds:
query_id = f"query-{split}-{row['query-id']}"
corpus_id = f"corpus-{split}-{row['corpus-id']}"
if query_id not in qrels:
qrels[query_id] = {}
qrels[query_id][corpus_id] = int(row["score"])
print(f"Loaded {len(queries)} queries, {len(corpus)} corpus items, {len(qrels)} query-relevance mappings")
# Filter qrels to only include queries that exist
qrels = {qid: rel_docs for qid, rel_docs in qrels.items() if qid in queries}
# Filter out queries without any relevant documents (matching MTEB behavior)
# This is important for correct NDCG calculation
qrels_filtered = {qid: rel_docs for qid, rel_docs in qrels.items() if len(rel_docs) > 0}
queries_filtered = {qid: query_text for qid, query_text in queries.items() if qid in qrels_filtered}
print(f"After filtering queries without positives: {len(queries_filtered)} queries, {len(qrels_filtered)} query-relevance mappings")
return corpus, queries_filtered, qrels_filtered
def evaluate_task(
task_name: str,
model_name: str,
index_path: str,
use_fast_plaid: bool = False,
fast_plaid_index_path: Optional[str] = None,
rebuild_index: bool = False,
top_k: int = 1000,
first_stage_k: int = 500,
k_values: list[int] = [1, 3, 5, 10, 20, 100, 1000],
output_dir: Optional[str] = None,
):
"""
Evaluate a single ViDoRe v1 task.
"""
print(f"\n{'='*80}")
print(f"Evaluating task: {task_name}")
print(f"{'='*80}")
# Get task config
if task_name not in VIDORE_V1_TASKS:
raise ValueError(f"Unknown task: {task_name}. Available: {list(VIDORE_V1_TASKS.keys())}")
task_config = VIDORE_V1_TASKS[task_name]
dataset_path = task_config["dataset_path"]
revision = task_config["revision"]
# Load data
corpus, queries, qrels = load_vidore_v1_data(
dataset_path=dataset_path,
revision=revision,
split="test",
)
# Check if we have any queries
if len(queries) == 0:
print(f"\nWarning: No queries found for task {task_name}. Skipping evaluation.")
# Return zero scores
scores = {}
for k in k_values:
scores[f"ndcg_at_{k}"] = 0.0
scores[f"map_at_{k}"] = 0.0
scores[f"recall_at_{k}"] = 0.0
scores[f"precision_at_{k}"] = 0.0
scores[f"mrr_at_{k}"] = 0.0
return scores
# Initialize evaluator
evaluator = ViDoReBenchmarkEvaluator(
model_name=model_name,
use_fast_plaid=use_fast_plaid,
top_k=top_k,
first_stage_k=first_stage_k,
k_values=k_values,
)
# Build or load index
index_path_full = index_path if not use_fast_plaid else fast_plaid_index_path
if index_path_full is None:
index_path_full = f"./indexes/{task_name}_{model_name}"
if use_fast_plaid:
index_path_full = f"./indexes/{task_name}_{model_name}_fastplaid"
index_or_retriever, corpus_ids_ordered = evaluator.build_index_from_corpus(
corpus=corpus,
index_path=index_path_full,
rebuild=rebuild_index,
)
# Search queries
task_prompt = task_config.get("prompt")
results = evaluator.search_queries(
queries=queries,
corpus_ids=corpus_ids_ordered,
index_or_retriever=index_or_retriever,
fast_plaid_index_path=fast_plaid_index_path,
task_prompt=task_prompt,
)
# Evaluate
scores = evaluator.evaluate_results(results, qrels, k_values=k_values)
# Print results
print(f"\n{'='*80}")
print(f"Results for {task_name}:")
print(f"{'='*80}")
for metric, value in scores.items():
if isinstance(value, (int, float)):
print(f" {metric}: {value:.5f}")
# Save results
if output_dir:
os.makedirs(output_dir, exist_ok=True)
results_file = os.path.join(output_dir, f"{task_name}_results.json")
scores_file = os.path.join(output_dir, f"{task_name}_scores.json")
with open(results_file, "w") as f:
json.dump(results, f, indent=2)
print(f"\nSaved results to: {results_file}")
with open(scores_file, "w") as f:
json.dump(scores, f, indent=2)
print(f"Saved scores to: {scores_file}")
return scores
def main():
parser = argparse.ArgumentParser(
description="Evaluate ViDoRe v1 benchmark using LEANN/Fast-Plaid indexing"
)
parser.add_argument(
"--model",
type=str,
default="colqwen2",
choices=["colqwen2", "colpali"],
help="Model to use",
)
parser.add_argument(
"--task",
type=str,
default=None,
help="Specific task to evaluate (or 'all' for all tasks)",
)
parser.add_argument(
"--tasks",
type=str,
default="all",
help="Tasks to evaluate: 'all' or comma-separated list",
)
parser.add_argument(
"--index-path",
type=str,
default=None,
help="Path to LEANN index (auto-generated if not provided)",
)
parser.add_argument(
"--use-fast-plaid",
action="store_true",
help="Use Fast-Plaid instead of LEANN",
)
parser.add_argument(
"--fast-plaid-index-path",
type=str,
default=None,
help="Path to Fast-Plaid index (auto-generated if not provided)",
)
parser.add_argument(
"--rebuild-index",
action="store_true",
help="Rebuild index even if it exists",
)
parser.add_argument(
"--top-k",
type=int,
default=1000,
help="Top-k results to retrieve (MTEB default is max(k_values)=1000)",
)
parser.add_argument(
"--first-stage-k",
type=int,
default=500,
help="First stage k for LEANN search",
)
parser.add_argument(
"--k-values",
type=str,
default="1,3,5,10,20,100,1000",
help="Comma-separated k values for evaluation (e.g., '1,3,5,10,100')",
)
parser.add_argument(
"--output-dir",
type=str,
default="./vidore_v1_results",
help="Output directory for results",
)
args = parser.parse_args()
# Parse k_values
k_values = [int(k.strip()) for k in args.k_values.split(",")]
# Determine tasks to evaluate
if args.task:
tasks_to_eval = [args.task]
elif args.tasks.lower() == "all":
tasks_to_eval = list(VIDORE_V1_TASKS.keys())
else:
tasks_to_eval = [t.strip() for t in args.tasks.split(",")]
print(f"Tasks to evaluate: {tasks_to_eval}")
# Evaluate each task
all_scores = {}
for task_name in tasks_to_eval:
try:
scores = evaluate_task(
task_name=task_name,
model_name=args.model,
index_path=args.index_path,
use_fast_plaid=args.use_fast_plaid,
fast_plaid_index_path=args.fast_plaid_index_path,
rebuild_index=args.rebuild_index,
top_k=args.top_k,
first_stage_k=args.first_stage_k,
k_values=k_values,
output_dir=args.output_dir,
)
all_scores[task_name] = scores
except Exception as e:
print(f"\nError evaluating {task_name}: {e}")
import traceback
traceback.print_exc()
continue
# Print summary
if all_scores:
print(f"\n{'='*80}")
print("SUMMARY")
print(f"{'='*80}")
for task_name, scores in all_scores.items():
print(f"\n{task_name}:")
# Print main metrics
for metric in ["ndcg_at_5", "ndcg_at_10", "ndcg_at_100", "map_at_10", "recall_at_10"]:
if metric in scores:
print(f" {metric}: {scores[metric]:.5f}")
if __name__ == "__main__":
main()

View File

@@ -25,38 +25,14 @@ Usage:
import argparse
import json
import os
import time
from pathlib import Path
from typing import Any, Optional
from typing import Optional
import numpy as np
from datasets import load_dataset
from PIL import Image
from tqdm import tqdm
# Import MTEB for evaluation metrics
try:
import pytrec_eval
from mteb._evaluators.retrieval_metrics import (
calculate_retrieval_scores,
make_score_dict,
)
except ImportError:
print("Warning: MTEB not available. Install with: pip install mteb")
pytrec_eval = None
from leann_multi_vector import (
_ensure_repo_paths_importable,
_load_colvision,
_embed_images,
_embed_queries,
_build_index,
_load_retriever_if_index_exists,
_build_fast_plaid_index,
_load_fast_plaid_index_if_exists,
_search_fast_plaid,
_get_fast_plaid_image,
_get_fast_plaid_metadata,
ViDoReBenchmarkEvaluator,
)
_ensure_repo_paths_importable(__file__)
@@ -181,194 +157,14 @@ def load_vidore_v2_data(
# Filter qrels to only include queries that exist
qrels = {qid: rel_docs for qid, rel_docs in qrels.items() if qid in queries}
return corpus, queries, qrels
def build_index_from_corpus(
corpus: dict[str, Image.Image],
model,
processor,
index_path: str,
use_fast_plaid: bool = False,
rebuild: bool = False,
):
"""
Build index from corpus images.
# Filter out queries without any relevant documents (matching MTEB behavior)
# This is important for correct NDCG calculation
qrels_filtered = {qid: rel_docs for qid, rel_docs in qrels.items() if len(rel_docs) > 0}
queries_filtered = {qid: query_text for qid, query_text in queries.items() if qid in qrels_filtered}
Returns:
tuple: (retriever or fast_plaid_index object, list of corpus_ids in order)
"""
# Ensure consistent ordering
corpus_ids = sorted(corpus.keys()) # Sort for consistency
images = [corpus[cid] for cid in corpus_ids]
print(f"After filtering queries without positives: {len(queries_filtered)} queries, {len(qrels_filtered)} query-relevance mappings")
if use_fast_plaid:
# Check if Fast-Plaid index exists
if not rebuild and _load_fast_plaid_index_if_exists(index_path) is not None:
print(f"Fast-Plaid index already exists at {index_path}")
return _load_fast_plaid_index_if_exists(index_path), corpus_ids
print(f"Building Fast-Plaid index at {index_path}...")
# Embed images
print("Embedding images...")
doc_vecs = _embed_images(model, processor, images)
# Build index
fast_plaid_index, build_time = _build_fast_plaid_index(
index_path, doc_vecs, corpus_ids, images
)
print(f"Fast-Plaid index built in {build_time:.2f}s")
return fast_plaid_index, corpus_ids
else:
# Check if LEANN index exists
if not rebuild:
retriever = _load_retriever_if_index_exists(index_path)
if retriever is not None:
print(f"LEANN index already exists at {index_path}")
return retriever, corpus_ids
print(f"Building LEANN index at {index_path}...")
# Embed images
print("Embedding images...")
doc_vecs = _embed_images(model, processor, images)
# Build index
retriever = _build_index(index_path, doc_vecs, corpus_ids, images)
print(f"LEANN index built")
return retriever, corpus_ids
def search_queries(
queries: dict[str, str],
corpus_ids: list[str],
model,
processor,
index_or_retriever: Any,
use_fast_plaid: bool = False,
fast_plaid_index_path: Optional[str] = None,
top_k: int = 100,
first_stage_k: int = 500,
task_prompt: Optional[dict[str, str]] = None,
) -> dict[str, dict[str, float]]:
"""
Search queries against the index.
Args:
queries: dict mapping query_id to query text
corpus_ids: list of corpus_ids in the same order as the index
model: model object
processor: processor object
index_or_retriever: index or retriever object
use_fast_plaid: whether using Fast-Plaid
fast_plaid_index_path: path to Fast-Plaid index (for metadata)
top_k: top-k results to retrieve
first_stage_k: first stage k for LEANN search
task_prompt: Optional dict with prompt for query (e.g., {"query": "..."})
Returns:
results: dict mapping query_id to dict of {corpus_id: score}
"""
print(f"Searching {len(queries)} queries (top_k={top_k})...")
query_ids = list(queries.keys())
query_texts = [queries[qid] for qid in query_ids]
# Match MTEB: combine queries with instruction/prompt if provided
# MTEB's _combine_queries_with_instruction_text does: query + " " + instruction
if task_prompt and "query" in task_prompt:
instruction = task_prompt["query"]
query_texts = [q + " " + instruction for q in query_texts]
print(f"Added task prompt to queries: {instruction}")
# Embed queries
print("Embedding queries...")
query_vecs = _embed_queries(model, processor, query_texts)
results = {}
for query_id, query_vec in zip(tqdm(query_ids, desc="Searching"), query_vecs):
if use_fast_plaid:
# Fast-Plaid search
search_results, _ = _search_fast_plaid(index_or_retriever, query_vec, top_k)
# Convert doc_id back to corpus_id
query_results = {}
for score, doc_id in search_results:
if doc_id < len(corpus_ids):
corpus_id = corpus_ids[doc_id]
query_results[corpus_id] = float(score)
else:
# LEANN search
query_np = query_vec.float().numpy()
search_results = index_or_retriever.search_exact_all(query_np, topk=top_k)
# Convert doc_id back to corpus_id
query_results = {}
for score, doc_id in search_results:
if doc_id < len(corpus_ids):
corpus_id = corpus_ids[doc_id]
query_results[corpus_id] = float(score)
results[query_id] = query_results
return results
def evaluate_results(
results: dict[str, dict[str, float]],
qrels: dict[str, dict[str, int]],
k_values: list[int] = [1, 3, 5, 10, 100],
) -> dict[str, float]:
"""
Evaluate retrieval results using NDCG and other metrics.
Returns:
Dictionary of metric scores
"""
if pytrec_eval is None:
raise ImportError("pytrec_eval is required for evaluation. Install with: pip install pytrec-eval")
# Check if we have any queries to evaluate
if len(results) == 0:
print("Warning: No queries to evaluate. Returning zero scores.")
# Return zero scores for all metrics
scores = {}
for k in k_values:
scores[f"ndcg_at_{k}"] = 0.0
scores[f"map_at_{k}"] = 0.0
scores[f"recall_at_{k}"] = 0.0
scores[f"precision_at_{k}"] = 0.0
scores[f"mrr_at_{k}"] = 0.0
return scores
print(f"Evaluating results with k_values={k_values}...")
# Convert qrels to pytrec_eval format
qrels_pytrec = {}
for qid, rel_docs in qrels.items():
qrels_pytrec[qid] = {did: score for did, score in rel_docs.items()}
# Evaluate
eval_result = calculate_retrieval_scores(
results=results,
qrels=qrels_pytrec,
k_values=k_values,
)
# Format scores
scores = make_score_dict(
ndcg=eval_result.ndcg,
_map=eval_result.map,
recall=eval_result.recall,
precision=eval_result.precision,
mrr=eval_result.mrr,
naucs=eval_result.naucs,
naucs_mrr=eval_result.naucs_mrr,
cv_recall=eval_result.cv_recall,
task_scores={},
)
return scores
return corpus, queries_filtered, qrels_filtered
def evaluate_task(
@@ -432,10 +228,14 @@ def evaluate_task(
scores[f"mrr_at_{k}"] = 0.0
return scores
# Load model
print(f"\nLoading model: {model_name}")
model_name_actual, model, processor, device_str, device, dtype = _load_colvision(model_name)
print(f"Model loaded: {model_name_actual}")
# Initialize evaluator
evaluator = ViDoReBenchmarkEvaluator(
model_name=model_name,
use_fast_plaid=use_fast_plaid,
top_k=top_k,
first_stage_k=first_stage_k,
k_values=k_values,
)
# Build or load index
index_path_full = index_path if not use_fast_plaid else fast_plaid_index_path
@@ -444,32 +244,24 @@ def evaluate_task(
if use_fast_plaid:
index_path_full = f"./indexes/{task_name}_{model_name}_fastplaid"
index_or_retriever, corpus_ids_ordered = build_index_from_corpus(
index_or_retriever, corpus_ids_ordered = evaluator.build_index_from_corpus(
corpus=corpus,
model=model,
processor=processor,
index_path=index_path_full,
use_fast_plaid=use_fast_plaid,
rebuild=rebuild_index,
)
# Search queries
task_prompt = task_config.get("prompt")
results = search_queries(
results = evaluator.search_queries(
queries=queries,
corpus_ids=corpus_ids_ordered,
model=model,
processor=processor,
index_or_retriever=index_or_retriever,
use_fast_plaid=use_fast_plaid,
fast_plaid_index_path=fast_plaid_index_path,
top_k=top_k,
first_stage_k=first_stage_k,
task_prompt=task_prompt,
)
# Evaluate
scores = evaluate_results(results, qrels, k_values=k_values)
scores = evaluator.evaluate_results(results, qrels, k_values=k_values)
# Print results
print(f"\n{'='*80}")