* Add grep search functionality to LeannSearcher - Add use_grep parameter to search method - Implement grep-based search on .jsonl files - Add fallback Python regex search - Support same SearchResult format as semantic search Addresses issue #86 * fix: resolve linting errors * docs: add grep search example * docs: add grep search to README examples * refactor: remove regex fallback, move grep example to features section * docs: add grep search to Advanced Features with comprehensive guide
This commit is contained in:
13
README.md
13
README.md
@@ -656,6 +656,19 @@ results = searcher.search(
|
||||
|
||||
📖 **[Complete Metadata filtering guide →](docs/metadata_filtering.md)**
|
||||
|
||||
### 🔍 Grep Search
|
||||
|
||||
For exact text matching instead of semantic search, use the `use_grep` parameter:
|
||||
|
||||
```python
|
||||
# Exact text search
|
||||
results = searcher.search("banana‑crocodile", use_grep=True, top_k=1)
|
||||
```
|
||||
|
||||
**Use cases**: Finding specific code patterns, error messages, function names, or exact phrases where semantic similarity isn't needed.
|
||||
|
||||
📖 **[Complete grep search guide →](docs/grep_search.md)**
|
||||
|
||||
## 🏗️ Architecture & How It Works
|
||||
|
||||
<p align="center">
|
||||
|
||||
149
docs/grep_search.md
Normal file
149
docs/grep_search.md
Normal file
@@ -0,0 +1,149 @@
|
||||
# LEANN Grep Search Usage Guide
|
||||
|
||||
## Overview
|
||||
|
||||
LEANN's grep search functionality provides exact text matching for finding specific code patterns, error messages, function names, or exact phrases in your indexed documents.
|
||||
|
||||
## Basic Usage
|
||||
|
||||
### Simple Grep Search
|
||||
|
||||
```python
|
||||
from leann.api import LeannSearcher
|
||||
|
||||
searcher = LeannSearcher("your_index_path")
|
||||
|
||||
# Exact text search
|
||||
results = searcher.search("def authenticate_user", use_grep=True, top_k=5)
|
||||
|
||||
for result in results:
|
||||
print(f"Score: {result.score}")
|
||||
print(f"Text: {result.text[:100]}...")
|
||||
print("-" * 40)
|
||||
```
|
||||
|
||||
### Comparison: Semantic vs Grep Search
|
||||
|
||||
```python
|
||||
# Semantic search - finds conceptually similar content
|
||||
semantic_results = searcher.search("machine learning algorithms", top_k=3)
|
||||
|
||||
# Grep search - finds exact text matches
|
||||
grep_results = searcher.search("def train_model", use_grep=True, top_k=3)
|
||||
```
|
||||
|
||||
## When to Use Grep Search
|
||||
|
||||
### Use Cases
|
||||
|
||||
- **Code Search**: Finding specific function definitions, class names, or variable references
|
||||
- **Error Debugging**: Locating exact error messages or stack traces
|
||||
- **Documentation**: Finding specific API endpoints or exact terminology
|
||||
|
||||
### Examples
|
||||
|
||||
```python
|
||||
# Find function definitions
|
||||
functions = searcher.search("def __init__", use_grep=True)
|
||||
|
||||
# Find import statements
|
||||
imports = searcher.search("from sklearn import", use_grep=True)
|
||||
|
||||
# Find specific error types
|
||||
errors = searcher.search("FileNotFoundError", use_grep=True)
|
||||
|
||||
# Find TODO comments
|
||||
todos = searcher.search("TODO:", use_grep=True)
|
||||
|
||||
# Find configuration entries
|
||||
configs = searcher.search("server_port=", use_grep=True)
|
||||
```
|
||||
|
||||
## Technical Details
|
||||
|
||||
### How It Works
|
||||
|
||||
1. **File Location**: Grep search operates on the raw text stored in `.jsonl` files
|
||||
2. **Command Execution**: Uses the system `grep` command with case-insensitive search
|
||||
3. **Result Processing**: Parses JSON lines and extracts text and metadata
|
||||
4. **Scoring**: Simple frequency-based scoring based on query term occurrences
|
||||
|
||||
### Search Process
|
||||
|
||||
```
|
||||
Query: "def train_model"
|
||||
↓
|
||||
grep -i -n "def train_model" documents.leann.passages.jsonl
|
||||
↓
|
||||
Parse matching JSON lines
|
||||
↓
|
||||
Calculate scores based on term frequency
|
||||
↓
|
||||
Return top_k results
|
||||
```
|
||||
|
||||
### Scoring Algorithm
|
||||
|
||||
```python
|
||||
# Term frequency in document
|
||||
score = text.lower().count(query.lower())
|
||||
```
|
||||
|
||||
Results are ranked by score (highest first), with higher scores indicating more occurrences of the search term.
|
||||
|
||||
## Error Handling
|
||||
|
||||
### Common Issues
|
||||
|
||||
#### Grep Command Not Found
|
||||
```
|
||||
RuntimeError: grep command not found. Please install grep or use semantic search.
|
||||
```
|
||||
|
||||
**Solution**: Install grep on your system:
|
||||
- **Ubuntu/Debian**: `sudo apt-get install grep`
|
||||
- **macOS**: grep is pre-installed
|
||||
- **Windows**: Use WSL or install grep via Git Bash/MSYS2
|
||||
|
||||
#### No Results Found
|
||||
```python
|
||||
# Check if your query exists in the raw data
|
||||
results = searcher.search("your_query", use_grep=True)
|
||||
if not results:
|
||||
print("No exact matches found. Try:")
|
||||
print("1. Check spelling and case")
|
||||
print("2. Use partial terms")
|
||||
print("3. Switch to semantic search")
|
||||
```
|
||||
|
||||
## Complete Example
|
||||
|
||||
```python
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Grep Search Example
|
||||
Demonstrates grep search for exact text matching.
|
||||
"""
|
||||
|
||||
from leann.api import LeannSearcher
|
||||
|
||||
def demonstrate_grep_search():
|
||||
# Initialize searcher
|
||||
searcher = LeannSearcher("my_index")
|
||||
|
||||
print("=== Function Search ===")
|
||||
functions = searcher.search("def __init__", use_grep=True, top_k=5)
|
||||
for i, result in enumerate(functions, 1):
|
||||
print(f"{i}. Score: {result.score}")
|
||||
print(f" Preview: {result.text[:60]}...")
|
||||
print()
|
||||
|
||||
print("=== Error Search ===")
|
||||
errors = searcher.search("FileNotFoundError", use_grep=True, top_k=3)
|
||||
for result in errors:
|
||||
print(f"Content: {result.text.strip()}")
|
||||
print("-" * 40)
|
||||
|
||||
if __name__ == "__main__":
|
||||
demonstrate_grep_search()
|
||||
```
|
||||
35
examples/grep_search_example.py
Normal file
35
examples/grep_search_example.py
Normal file
@@ -0,0 +1,35 @@
|
||||
"""
|
||||
Grep Search Example
|
||||
|
||||
Shows how to use grep-based text search instead of semantic search.
|
||||
Useful when you need exact text matches rather than meaning-based results.
|
||||
"""
|
||||
|
||||
from leann import LeannSearcher
|
||||
|
||||
# Load your index
|
||||
searcher = LeannSearcher("my-documents.leann")
|
||||
|
||||
# Regular semantic search
|
||||
print("=== Semantic Search ===")
|
||||
results = searcher.search("machine learning algorithms", top_k=3)
|
||||
for result in results:
|
||||
print(f"Score: {result.score:.3f}")
|
||||
print(f"Text: {result.text[:80]}...")
|
||||
print()
|
||||
|
||||
# Grep-based search for exact text matches
|
||||
print("=== Grep Search ===")
|
||||
results = searcher.search("def train_model", top_k=3, use_grep=True)
|
||||
for result in results:
|
||||
print(f"Score: {result.score}")
|
||||
print(f"Text: {result.text[:80]}...")
|
||||
print()
|
||||
|
||||
# Find specific error messages
|
||||
error_results = searcher.search("FileNotFoundError", use_grep=True)
|
||||
print(f"Found {len(error_results)} files mentioning FileNotFoundError")
|
||||
|
||||
# Search for function definitions
|
||||
func_results = searcher.search("class SearchResult", use_grep=True, top_k=5)
|
||||
print(f"Found {len(func_results)} class definitions")
|
||||
@@ -6,6 +6,8 @@ with the correct, original embedding logic from the user's reference code.
|
||||
import json
|
||||
import logging
|
||||
import pickle
|
||||
import re
|
||||
import subprocess
|
||||
import time
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
@@ -653,6 +655,7 @@ class LeannSearcher:
|
||||
expected_zmq_port: int = 5557,
|
||||
metadata_filters: Optional[dict[str, dict[str, Union[str, int, float, bool, list]]]] = None,
|
||||
batch_size: int = 0,
|
||||
use_grep: bool = False,
|
||||
**kwargs,
|
||||
) -> list[SearchResult]:
|
||||
"""
|
||||
@@ -679,6 +682,10 @@ class LeannSearcher:
|
||||
Returns:
|
||||
List of SearchResult objects with text, metadata, and similarity scores
|
||||
"""
|
||||
# Handle grep search
|
||||
if use_grep:
|
||||
return self._grep_search(query, top_k)
|
||||
|
||||
logger.info("🔍 LeannSearcher.search() called:")
|
||||
logger.info(f" Query: '{query}'")
|
||||
logger.info(f" Top_k: {top_k}")
|
||||
@@ -795,9 +802,96 @@ class LeannSearcher:
|
||||
logger.info(f" {GREEN}✓ Final enriched results: {len(enriched_results)} passages{RESET}")
|
||||
return enriched_results
|
||||
|
||||
def _find_jsonl_file(self) -> Optional[str]:
|
||||
"""Find the .jsonl file containing raw passages for grep search"""
|
||||
index_path = Path(self.meta_path_str).parent
|
||||
potential_files = [
|
||||
index_path / "documents.leann.passages.jsonl",
|
||||
index_path.parent / "documents.leann.passages.jsonl",
|
||||
]
|
||||
|
||||
for file_path in potential_files:
|
||||
if file_path.exists():
|
||||
return str(file_path)
|
||||
return None
|
||||
|
||||
def _grep_search(self, query: str, top_k: int = 5) -> list[SearchResult]:
|
||||
"""Perform grep-based search on raw passages"""
|
||||
jsonl_file = self._find_jsonl_file()
|
||||
if not jsonl_file:
|
||||
raise FileNotFoundError("No .jsonl passages file found for grep search")
|
||||
|
||||
try:
|
||||
cmd = ["grep", "-i", "-n", query, jsonl_file]
|
||||
result = subprocess.run(cmd, capture_output=True, text=True, check=False)
|
||||
|
||||
if result.returncode == 1:
|
||||
return []
|
||||
elif result.returncode != 0:
|
||||
raise RuntimeError(f"Grep failed: {result.stderr}")
|
||||
|
||||
matches = []
|
||||
for line in result.stdout.strip().split("\n"):
|
||||
if not line:
|
||||
continue
|
||||
parts = line.split(":", 1)
|
||||
if len(parts) != 2:
|
||||
continue
|
||||
|
||||
try:
|
||||
data = json.loads(parts[1])
|
||||
text = data.get("text", "")
|
||||
score = text.lower().count(query.lower())
|
||||
|
||||
matches.append(
|
||||
SearchResult(
|
||||
id=data.get("id", parts[0]),
|
||||
text=text,
|
||||
metadata=data.get("metadata", {}),
|
||||
score=float(score),
|
||||
)
|
||||
)
|
||||
except json.JSONDecodeError:
|
||||
continue
|
||||
|
||||
matches.sort(key=lambda x: x.score, reverse=True)
|
||||
return matches[:top_k]
|
||||
|
||||
except FileNotFoundError:
|
||||
raise RuntimeError(
|
||||
"grep command not found. Please install grep or use semantic search."
|
||||
)
|
||||
|
||||
def _python_regex_search(self, query: str, top_k: int = 5) -> list[SearchResult]:
|
||||
"""Fallback regex search"""
|
||||
jsonl_file = self._find_jsonl_file()
|
||||
if not jsonl_file:
|
||||
raise FileNotFoundError("No .jsonl file found")
|
||||
|
||||
pattern = re.compile(re.escape(query), re.IGNORECASE)
|
||||
matches = []
|
||||
|
||||
with open(jsonl_file, encoding="utf-8") as f:
|
||||
for line_num, line in enumerate(f, 1):
|
||||
if pattern.search(line):
|
||||
try:
|
||||
data = json.loads(line.strip())
|
||||
matches.append(
|
||||
SearchResult(
|
||||
id=data.get("id", str(line_num)),
|
||||
text=data.get("text", ""),
|
||||
metadata=data.get("metadata", {}),
|
||||
score=float(len(pattern.findall(data.get("text", "")))),
|
||||
)
|
||||
)
|
||||
except json.JSONDecodeError:
|
||||
continue
|
||||
|
||||
matches.sort(key=lambda x: x.score, reverse=True)
|
||||
return matches[:top_k]
|
||||
|
||||
def cleanup(self):
|
||||
"""Explicitly cleanup embedding server resources.
|
||||
|
||||
This method should be called after you're done using the searcher,
|
||||
especially in test environments or batch processing scenarios.
|
||||
"""
|
||||
@@ -853,6 +947,7 @@ class LeannChat:
|
||||
expected_zmq_port: int = 5557,
|
||||
metadata_filters: Optional[dict[str, dict[str, Union[str, int, float, bool, list]]]] = None,
|
||||
batch_size: int = 0,
|
||||
use_grep: bool = False,
|
||||
**search_kwargs,
|
||||
):
|
||||
if llm_kwargs is None:
|
||||
|
||||
12
uv.lock
generated
12
uv.lock
generated
@@ -1564,7 +1564,7 @@ name = "importlib-metadata"
|
||||
version = "8.7.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "zipp" },
|
||||
{ name = "zipp", marker = "python_full_version < '3.10'" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/76/66/650a33bd90f786193e4de4b3ad86ea60b53c89b669a5c7be931fac31cdb0/importlib_metadata-8.7.0.tar.gz", hash = "sha256:d13b81ad223b890aa16c5471f2ac3056cf76c5f10f82d6f9292f0b415f389000", size = 56641, upload-time = "2025-04-27T15:29:01.736Z" }
|
||||
wheels = [
|
||||
@@ -2117,7 +2117,7 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "leann-backend-diskann"
|
||||
version = "0.3.2"
|
||||
version = "0.3.3"
|
||||
source = { editable = "packages/leann-backend-diskann" }
|
||||
dependencies = [
|
||||
{ name = "leann-core" },
|
||||
@@ -2129,14 +2129,14 @@ dependencies = [
|
||||
|
||||
[package.metadata]
|
||||
requires-dist = [
|
||||
{ name = "leann-core", specifier = "==0.3.2" },
|
||||
{ name = "leann-core", specifier = "==0.3.3" },
|
||||
{ name = "numpy" },
|
||||
{ name = "protobuf", specifier = ">=3.19.0" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "leann-backend-hnsw"
|
||||
version = "0.3.2"
|
||||
version = "0.3.3"
|
||||
source = { editable = "packages/leann-backend-hnsw" }
|
||||
dependencies = [
|
||||
{ name = "leann-core" },
|
||||
@@ -2149,7 +2149,7 @@ dependencies = [
|
||||
|
||||
[package.metadata]
|
||||
requires-dist = [
|
||||
{ name = "leann-core", specifier = "==0.3.2" },
|
||||
{ name = "leann-core", specifier = "==0.3.3" },
|
||||
{ name = "msgpack", specifier = ">=1.0.0" },
|
||||
{ name = "numpy" },
|
||||
{ name = "pyzmq", specifier = ">=23.0.0" },
|
||||
@@ -2157,7 +2157,7 @@ requires-dist = [
|
||||
|
||||
[[package]]
|
||||
name = "leann-core"
|
||||
version = "0.3.2"
|
||||
version = "0.3.3"
|
||||
source = { editable = "packages/leann-core" }
|
||||
dependencies = [
|
||||
{ name = "accelerate" },
|
||||
|
||||
Reference in New Issue
Block a user